Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quentin Mérigot is active.

Publication


Featured researches published by Quentin Mérigot.


Computer Graphics Forum | 2010

One Point Isometric Matching with the Heat Kernel

Maks Ovsjanikov; Quentin Mérigot; Facundo Mémoli; Leonidas J. Guibas

A common operation in many geometry processing algorithms consists of finding correspondences between pairs of shapes by finding structure‐preserving maps between them. A particularly useful case of such maps is isometries, which preserve geodesic distances between points on each shape. Although several algorithms have been proposed to find approximately isometric maps between a pair of shapes, the structure of the space of isometries is not well understood. In this paper, we show that under mild genericity conditions, a single correspondence can be used to recover an isometry defined on entire shapes, and thus the space of all isometries can be parameterized by one correspondence between a pair of points. Perhaps surprisingly, this result is general, and does not depend on the dimensionality or the genus, and is valid for compact manifolds in any dimension. Moreover, we show that both the initial correspondence and the isometry can be recovered efficiently in practice. This allows us to devise an algorithm to find intrinsic symmetries of shapes, match shapes undergoing isometric deformations, as well as match partial and incomplete models efficiently.


Computer Graphics Forum | 2011

A multiscale approach to optimal transport

Quentin Mérigot

In this paper, we propose an improvement of an algorithm of Aurenhammer, Hoffmann and Aronov to find a least square matching between a probability density and finite set of sites with mass constraints, in the Euclidean plane. Our algorithm exploits the multiscale nature of this optimal transport problem. We iteratively simplify the target using Lloyds algorithm, and use the solution of the simplified problem as a rough initial solution to the more complex one. This approach allows for fast estimation of distances between measures related to optimal transport (known as Earth‐mover or Wasserstein distances). We also discuss the implementation of these algorithms, and compare the original one to its multiscale counterpart.


Foundations of Computational Mathematics | 2011

Geometric Inference for Probability Measures

Frédéric Chazal; David Cohen-Steiner; Quentin Mérigot

Data often comes in the form of a point cloud sampled from an unknown compact subset of Euclidean space. The general goal of geometric inference is then to recover geometric and topological features (e.g., Betti numbers, normals) of this subset from the approximating point cloud data. It appears that the study of distance functions allows one to address many of these questions successfully. However, one of the main limitations of this framework is that it does not cope well with outliers or with background noise. In this paper, we show how to extend the framework of distance functions to overcome this problem. Replacing compact subsets by measures, we introduce a notion of distance function to a probability distribution in ℝd. These functions share many properties with classical distance functions, which make them suitable for inference purposes. In particular, by considering appropriate level sets of these distance functions, we show that it is possible to reconstruct offsets of sampled shapes with topological guarantees even in the presence of outliers. Moreover, in settings where empirical measures are considered, these functions can be easily evaluated, making them of particular practical interest.


IEEE Transactions on Visualization and Computer Graphics | 2011

Voronoi-Based Curvature and Feature Estimation from Point Clouds

Quentin Mérigot; Maks Ovsjanikov; Leonidas J. Guibas

We present an efficient and robust method for extracting curvature information, sharp features, and normal directions of a piecewise smooth surface from its point cloud sampling in a unified framework. Our method is integral in nature and uses convolved covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show that these matrices contain information related to curvature in the smooth parts of the surface, and information about the directions and angles of sharp edges around the features of a piecewise-smooth surface. Our method is applicable in both two and three dimensions, and can be easily parallelized, making it possible to process arbitrarily large point clouds, which was a challenge for Voronoi-based methods. In addition, we describe a Monte-Carlo version of our method, which is applicable in any dimension. We illustrate the correctness of both principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of models. As a sample application, we use our feature detection method to segment point cloud samplings of piecewise-smooth surfaces.


symposium on geometry processing | 2013

Shape matching via quotient spaces

Maks Ovsjanikov; Quentin Mérigot; Viorica Pătrăucean; Leonidas J. Guibas

We introduce a novel method for non‐rigid shape matching, designed to address the symmetric ambiguity problem present when matching shapes with intrinsic symmetries. Unlike the majority of existing methods which try to overcome this ambiguity by sampling a set of landmark correspondences, we address this problem directly by performing shape matching in an appropriate quotient space, where the symmetry has been identified and factored out. This allows us to both simplify the shape matching problem by matching between subspaces, and to return multiple solutions with equally good dense correspondences. Remarkably, both symmetry detection and shape matching are done without establishing any landmark correspondences between either points or parts of the shapes. This allows us to avoid an expensive combinatorial search present in most intrinsic symmetry detection and shape matching methods. We compare our technique with state‐of‐the‐art methods and show that superior performance can be achieved both when the symmetry on each shape is known and when it needs to be estimated.


solid and physical modeling | 2009

Robust Voronoi-based curvature and feature estimation

Quentin Mérigot; Maks Ovsjanikov; Leonidas J. Guibas

Many algorithms for shape analysis and shape processing rely on accurate estimates of differential information such as normals and curvature. In most settings, however, care must be taken around non-smooth areas of the shape where these quantities are not easily defined. This problem is particularly prominent with point-cloud data, which are discontinuous everywhere. In this paper we present an efficient and robust method for extracting principal curvatures, sharp features and normal directions of a piecewise smooth surface from its point cloud sampling, with theoretical guarantees. Our method is integral in nature and uses convolved covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show analytically that our method recovers correct principal curvatures and principal curvature directions in smooth parts of the shape, and correct feature directions and feature angles at the sharp edges of a piecewise smooth surface, with the error bounded by the Hausdorff distance between the point cloud and the underlying surface. Using the same analysis we provide theoretical guarantees for a modification of a previously proposed normal estimation technique. We illustrate the correctness of both principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of models.


Foundations of Computational Mathematics | 2010

Boundary Measures for Geometric Inference

Frédéric Chazal; David Cohen-Steiner; Quentin Mérigot

We study the boundary measures of compact subsets of the d-dimensional Euclidean space, which are closely related to Federer’s curvature measures. We show that they can be computed efficiently for point clouds and suggest that these measures can be used for geometric inference. The main contribution of this work is the proof of a quantitative stability theorem for boundary measures using tools of convex analysis and geometric measure theory. As a corollary we obtain a stability result for Federer’s curvature measures of a compact set, showing that they can be reliably estimated from point-cloud approximations.We study the boundary measures of compact subsets of the d-dimensional Euclidean space, which are closely related to Federer’s curvature measures. We show that they can be computed efficiently for point clouds and suggest that these measures can be used for geometric inference. The main contribution of this work is the proof of a quantitative stability theorem for boundary measures using tools of convex analysis and geometric measure theory. As a corollary we obtain a stability result for Federer’s curvature measures of a compact set, showing that they can be reliably estimated from point-cloud approximations.


Computer Graphics Forum | 2010

Feature Preserving Mesh Generation from 3D Point Clouds

Nader Salman; Mariette Yvinec; Quentin Mérigot

We address the problem of generating quality surface triangle meshes from 3D point clouds sampled on piecewise smooth surfaces. Using a feature detection process based on the covariance matrices of Voronoi cells, we first extract from the point cloud a set of sharp features. Our algorithm also runs on the input point cloud a reconstruction process, such as Poisson reconstruction, providing an implicit surface. A feature preserving variant of a Delaunay refinement process is then used to generate a mesh approximating the implicit surface and containing a faithful representation of the extracted sharp edges. Such a mesh provides an enhanced trade‐off between accuracy and mesh complexity. The whole process is robust to noise and made versatile through a small set of parameters which govern the mesh sizing, approximation error and shape of the elements. We demonstrate the effectiveness of our method on a variety of models including laser scanned datasets ranging from indoor to outdoor scenes.


Discrete and Computational Geometry | 2013

Witnessed k-Distance

Leonidas J. Guibas; Dmitriy Morozov; Quentin Mérigot

Distance functions to compact sets play a central role in several areas of computational geometry. Methods that rely on them are robust to the perturbations of the data by the Hausdorff noise, but fail in the presence of outliers. The recently introduced distance to a measure offers a solution by extending the distance function framework to reasoning about the geometry of probability measures, while maintaining theoretical guarantees about the quality of the inferred information. A combinatorial explosion hinders working with distance to a measure as an ordinary power distance function. In this paper, we analyze an approximation scheme that keeps the representation linear in the size of the input, while maintaining the guarantees on the inference quality close to those for the exact but costly representation.


SIAM Journal on Numerical Analysis | 2014

HANDLING CONVEXITY-LIKE CONSTRAINTS IN VARIATIONAL PROBLEMS ∗

Quentin Mérigot; Édouard Oudet

We provide a general framework to construct finite-dimensional approximations of the space of convex functions, which also applies to the space of

Collaboration


Dive into the Quentin Mérigot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitriy Morozov

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Alliez

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jun Kitagawa

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge