Quentin R. Johnson
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quentin R. Johnson.
Molecules | 2015
Quentin R. Johnson; Richard J. Lindsay; Loukas Petridis; Tongye Shen
Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.
Proteins | 2016
Quentin R. Johnson; Richard J. Lindsay; Ricky B. Nellas; Tongye Shen
A special class of proteins adopts an inactive conformation in aqueous solution and activates at an interface (such as the surface of lipid droplet) by switching their conformations. Lipase, an essential enzyme for breaking down lipids, serves as a model system for studying such interfacial proteins. The underlying conformational switch of lipase induced by solvent condition is achieved through changing the status of the gated substrate‐access channel. Interestingly, a lipase was also reported to exhibit pressure activation, which indicates it is drastically active at high hydrostatic pressure. To unravel the molecular mechanism of this unusual phenomenon, we examined the structural changes induced by high hydrostatic pressures (up to 1500 MPa) using molecular dynamics simulations. By monitoring the width of the access channel, we found that the protein undergoes a conformational transition and opens the access channel at high pressures (>100 MPa). Particularly, a disordered amphiphilic α5 region of the protein becomes ordered at high pressure. This positive correlation between the channel opening and α5 ordering is consistent with the early findings of the gating motion in the presence of a water–oil interface. Statistical analysis of the ensemble of conformations also reveals the essential collective motions of the protein and how these motions contribute to gating. Arguments are presented as to why heightened sensitivity to high‐pressure perturbation can be a general feature of switchable interfacial proteins. Further mutations are also suggested to validate our observations. Proteins 2016; 84:820–827.
Journal of Physical Chemistry B | 2016
Alexander K. Clark; J. Heath Wilder; Aaron W. Grayson; Quentin R. Johnson; Richard J. Lindsay; Ricky B. Nellas; Elias J. Fernandez; Tongye Shen
The promiscuous protein retinoid X receptor (RXR) displays essential allosteric regulation of several members in the nuclear hormone receptor superfamily via heterodimerization and (anti)cooperative binding of cognate ligands. Here, the structural basis of the positive allostery of RXR and constitutive androstane receptor (CAR) is revealed. In contrast, a similar computational approach had previously revealed the mechanism for negative allostery in the complex of RXR and thyroid receptor (TR). By comparing the positive and negative allostery of RXR complexed with CAR and TR respectively, we reported the promiscuous allosteric control involving RXR. We characterize the allosteric mechanism by expressing the correlated dynamics of selected residue-residue contacts which was extracted from atomistic molecular dynamics simulation and statistical analysis. While the same set of residues in the binding pocket of RXR may initiate the residue-residue interaction network, RXR uses largely different sets of contacts (only about one-third identical) and allosteric modes to regulate TR and CAR. The promiscuity of RXR control may originate from multiple factors, including (1) the frustrated fit of cognate ligand 9c to the RXR binding pocket and (2) the different ligand-binding features of TR (loose) versus CAR (tight) to their corresponding cognate ligands.
Journal of Physical Chemistry B | 2014
Quentin R. Johnson; Richard J. Lindsay; Sherin R. Raval; Jeremy S. Dobbs; Ricky B. Nellas; Tongye Shen
Glycosylation is an essential modification of proteins and lipids by the addition of carbohydrate residues. These attached carbohydrates range from single monomers to elaborate branched glycans. Here, we examine how the level of glycosylation affects the conformation of a semiflexible peptide linker using the example of the hinge peptide from immunoglobulin A. Three sets of atomistic models of this hinge peptide with varying degrees of glycosylation are constructed to probe how glycosylation affects the physical properties of the linker. We found that glycosylation greatly altered the predominant conformations of the peptide, causing it to become elongated in reference to the unglycosylated form. Furthermore, glycosylation restricts the conformational exploration of the peptide. At the residue level, glycans are found to introduce a bias for the formation of more extended secondary structural elements for glycosylated serines. Additionally, the flexibility of this semiflexible proline-rich peptide is significantly reduced by glycosylation.
Journal of Chemical Physics | 2018
Richard J. Lindsay; Jan Siess; David P. Lohry; Trevor S. McGee; Jordan S. Ritchie; Quentin R. Johnson; Tongye Shen
We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.
Journal of Computational Chemistry | 2018
Quentin R. Johnson; Richard J. Lindsay; Tongye Shen
A computational method which extracts the dominant motions from an ensemble of biomolecular conformations via a correlation analysis of residue–residue contacts is presented. The algorithm first renders the structural information into contact matrices, then constructs the collective modes based on the correlated dynamics of a selected set of dynamic contacts. Associated programs can bridge the results for further visualization using graphics software. The aim of this method is to provide an analysis of conformations of biopolymers from the contact viewpoint. It may assist a systematical uncovering of conformational switching mechanisms existing in proteins and biopolymer systems in general by statistical analysis of simulation snapshots. In contrast to conventional correlation analyses of Cartesian coordinates (such as distance covariance analysis and Cartesian principal component analysis), this program also provides an alternative way to locate essential collective motions in general. Herein, we detail the algorithm in a stepwise manner and comment on the importance of the method as applied to decoding allosteric mechanisms.
Biopolymers | 2016
Richard J. Lindsay; Quentin R. Johnson; Wilfredo Evangelista; Ricky B. Nellas; Tongye Shen
Interfacial proteins function in unique heterogeneous solvent environments, such as water–oil interfaces. One important example is microbial lipase, which is activated in an oil‐water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all‐atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed‐gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open‐gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α‐helical, as we previously observed in studies that address water–oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.
Biochemistry | 2015
Quentin R. Johnson; Richard J. Lindsay; Ricky B. Nellas; Elias J. Fernandez; Tongye Shen
Biochemistry | 2012
Quentin R. Johnson; Ricky B. Nellas; Tongye Shen
Biochemistry | 2013
Ricky B. Nellas; Quentin R. Johnson; Tongye Shen