Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quinn Lu is active.

Publication


Featured researches published by Quinn Lu.


Trends in Biotechnology | 2005

Seamless cloning and gene fusion

Quinn Lu

Gene fusion technology is a key tool in facilitating gene function studies. Hybrid molecules in which all the components are joined precisely, without the presence of intervening and unwanted extraneous sequences, enable accurate studies of molecules and the characterization of individual components. This article reviews situations in which seamlessly fused genes and proteins are required or desired and describes molecular approaches that are available for generating these hybrid molecules.


Journal of Pharmacology and Experimental Therapeutics | 2009

Evidence for Allosteric Interactions of Antagonist Binding to the Smoothened Receptor

Cynthia M. Rominger; Weilin Tiger Bee; Robert A. Copeland; Elizabeth A. Davenport; Aidan G. Gilmartin; Richard R. Gontarek; Keith R. Hornberger; Lorena A. Kallal; Zhihong Lai; Kenneth W. M. Lawrie; Quinn Lu; Lynette J. McMillan; Maggie Truong; Peter J. Tummino; B. Turunen; M. Will; William J. Zuercher; David H. Rominger

The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development, cell growth, and migration, as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers, and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here, we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo. Binding of two radioligands, [3H]3-chloro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)-phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.3) (agonist) and [3H]cyclopamine (antagonist), was characterized using human Smo expressed in human embryonic kidney 293F membranes. We observed full displacement of [3H]cyclopamine by all Smo agonist and antagonist ligands examined. N-[(1E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]-4-(phenylmethyl)-1-piperazinamine (SANT-1), an antagonist, did not fully inhibit the binding of [3H]SAG-1.3. In a functional cell-based β-lactamase reporter gene assay, SANT-1 and N-[3-(1H-benzimidazol-2-yl)-4-chlorophenyl]-3,4,5-tris(ethyloxy)-benzamide (SANT-2) fully inhibited 3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.5)-induced Hh pathway activation. Detailed “Schild-type” radioligand binding analysis with [3H]SAG-1.3 revealed that two structurally distinct Smoothened receptor antagonists, SANT-1 and SANT-2, bound in a manner consistent with that of allosteric modulation. Our mechanism of action characterization of radioligand binding to Smo combined with functional data provides a better understanding of small-molecule interactions with Smo and their influence on the Hh pathway.


Applied and Environmental Microbiology | 2008

Suppressing Posttranslational Gluconoylation of Heterologous Proteins by Metabolic Engineering of Escherichia coli

Juan C. Aon; Richard J. Caimi; Alexander H. Taylor; Quinn Lu; Femi Oluboyede; Jennifer Dally; Michelle Kessler; John J. Kerrigan; Tia S. Lewis; Lisa A. Wysocki; Pramatesh S. Patel

ABSTRACT Minimization of chemical modifications during the production of proteins for pharmaceutical and medical applications is of fundamental and practical importance. The gluconoylation of heterologously expressed protein which is observed in Escherichia coli BL21(DE3) constitutes one such undesired posttranslational modification. We postulated that formation of gluconoylated/phosphogluconoylated products of heterologous proteins is caused by the accumulation of 6-phosphogluconolactone due to the absence of phosphogluconolactonase (PGL) in the pentose phosphate pathway. The results obtained demonstrate that overexpression of a heterologous PGL in BL21(DE3) suppresses the formation of the gluconoylated adducts in the therapeutic proteins studied. When this E. coli strain was grown in high-cell-density fed-batch cultures with an extra copy of the pgl gene, we found that the biomass yield and specific productivity of a heterologous 18-kDa protein increased simultaneously by 50 and 60%, respectively. The higher level of PGL expression allowed E. coli strain BL21(DE3) to satisfy the extra demand for precursors, as well as the energy requirements, in order to replicate plasmid DNA and express heterologous genes, as metabolic flux analysis showed by the higher precursor and NADPH fluxes through the oxidative branch of the pentose phosphate shunt. This work shows that E. coli strain BL21(DE3) can be used as a host to produce three different proteins, a heterodimer of liver X receptors, elongin C, and an 18-kDa protein. This is the first report describing a novel and general strategy for suppressing this nonenzymatic modification by metabolic pathway engineering.


Protein Expression and Purification | 2011

Production of protein complexes via co-expression.

John J. Kerrigan; Qing Xie; Robert S. Ames; Quinn Lu

Multi-protein complexes are involved in essentially all cellular processes. A proteins function is defined by a combination of its own properties, its interacting partners, and the stoichiometry of each. Depending on binding partners, a transcription factor can function as an activator in one instance and a repressor in another. The study of protein function or malfunction is best performed in the relevant context. While many protein complexes can be reconstituted from individual component proteins after being produced individually, many others require co-expression of their native partners in the host cells for proper folding, stability, and activity. Protein co-expression has led to the production of a variety of biological active complexes in sufficient quantities for biochemical, biophysical, structural studies, and high throughput screens. This article summarizes examples of such cases and discusses critical considerations in selecting co-expression partners, and strategies to achieve successful production of protein complexes.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of 1-(1,3,5-triazin-2-yl)piperidine-4-carboxamides as inhibitors of soluble epoxide hydrolase.

Reema K. Thalji; Jeff J. McAtee; Svetlana L. Belyanskaya; Martin Brandt; Gregory D. Brown; Melissa H. Costell; Yun Ding; Jason W. Dodson; Steve H. Eisennagel; Rusty E. Fries; Jeffrey W. Gross; Mark R. Harpel; Dennis A. Holt; David I. Israel; Larry J. Jolivette; Daniel J. Krosky; Hu Li; Quinn Lu; Tracy Mandichak; Theresa J. Roethke; Christine G. Schnackenberg; Benjamin Schwartz; Lisa M. Shewchuk; Wensheng Xie; David J. Behm; Stephen A. Douglas; Ami L. Shaw; Joseph P. Marino

1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure. Based on this lead optimization work, 1-[4-methyl-6-(methylamino)-1,3,5-triazin-2-yl]-N-{[[4-bromo-2-(trifluoromethoxy)]-phenyl]methyl}-4-piperidinecarboxamide (27) was identified as a useful tool compound for in vivo investigation. Robust effects on a serum biomarker, 9, 10-epoxyoctadec-12(Z)-enoic acid (the epoxide derived from linoleic acid) were observed, which provided evidence of robust in vivo target engagement and the suitability of 27 as a tool compound for study in various disease models.


Methods of Molecular Biology | 2016

Gene Expression in Mammalian Cells Using BacMam, a Modified Baculovirus System

James A. Fornwald; Quinn Lu; Frederick M. Boyce; Robert S. Ames

BacMams are modified baculoviruses that contain mammalian expression cassettes for gene delivery and expression in mammalian cells. BacMams have become an integral part of the recombinant mammalian gene expression toolbox in research labs worldwide. Construction of transfer vectors is straightforward using basic molecular biology protocols. Virus generation is based on common methods used with the baculovirus insect cell expression system. BacMam transduction of mammalian cells requires minimal modifications to familiar cell culture methods. This chapter highlights the BacMam transfer vector pHTBV.


Journal of Biomolecular Screening | 2012

Perspectives on the Discovery of Small-Molecule Modulators for Epigenetic Processes

Quinn Lu; Amy M. Quinn; Mehul Patel; Simon F. Semus; Alan P. Graves; Deepak Bandyopadhyay; Andrew J. Pope; Sara H. Thrall

Epigenetic gene regulation is a critical process controlling differentiation and development, the malfunction of which may underpin a variety of diseases. In this article, we review the current landscape of small-molecule epigenetic modulators including drugs on the market, key compounds in clinical trials, and chemical probes being used in epigenetic mechanistic studies. Hit identification strategies for the discovery of small-molecule epigenetic modulators are summarized with respect to writers, erasers, and readers of histone marks. Perspectives are provided on opportunities for new hit discovery approaches, some of which may define the next generation of therapeutic intervention strategies for epigenetic processes.


Cell Cycle | 2013

Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism

Basil P. Hubbard; Christine Loh; Ana P. Gomes; Jun Li; Quinn Lu; Taylor Lg Doyle; Jeremy S. Disch; Sean M. Armour; James L. Ellis; George P. Vlasuk; David A. Sinclair

SIRT1 is an NAD+-dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1.


Expert Opinion on Drug Discovery | 2009

Viral-mediated gene delivery for cell-based assays in drug discovery.

Robert S. Ames; Quinn Lu

Background: Adenovirus, retrovirus and lentivirus-based vectors, originally engineered and optimized for in vivo and ex vivo gene therapy, have become increasingly useful for viral-mediated gene delivery to support in vitro cell-based assays. Viral vectors underpin functional genomics screening of cDNA, shRNA and aptamer libraries, are used for a variety of target validation studies and importantly, for high-throughput cell-based drug discovery and compound profiling assays. The baculovirus/insect cell expression system had gained prevalence as a tool for recombinant protein production when it was observed that recombinant baculovirus vectors too could serve as efficient gene delivery vehicles for a wide range of mammalian cells. Although the use of baculovirus vectors in vivo has lagged behind retroviral, adenoviral and lentiviral vectors, they have gained prominence for development of in vitro cell-based assays due to the ease of generation, broad host range and excellent biosafety profile. There is an increasing emphasis on cell-based assays in high-throughput automated drug discovery laboratories and a variety of commercially available viral-vectors can be used for supporting these assays. Objective: We compare and contrast the current viral-mediated gene delivery vector systems and highlight their suitability for cell-based drug discovery assays. Conclusion: Viral-mediated gene delivery is increasingly being used in support of genome scale target validation studies and cell-based assay development for specific drug target genes such as ion channels, G protein-coupled receptors and intracellular enzymes. The choice of a delivery system over another for a particular application is largely dictated by the cell types and cell lines in use, virus cellular tropism, assay throughput, safety requirements and ease/cost of reagent generation.


Molecular Biotechnology | 2010

Development of a High Throughput Cell-Based Assay for Soluble Epoxide Hydrolase Using BacMam Technology

Wensheng Xie; Xiaoyan Tang; Quinn Lu; Robert S. Ames; Steven Ratcliffe; Hu Li

Epoxyeicosatrienoic acids (EETs) play important protective functions in cardiovascular and renal systems. Under physiological conditions, EETs are quickly converted by the soluble epoxide hydrolase (sEH) to diols which do not have the beneficiary roles. Inhibition of sEH with small molecules to increase the concentration of EETs therefore provides an attractive therapeutic strategy for cardiovascular diseases. We describe here the development of a high throughput cell-based assay to measure sEH activity and screen small molecular compounds as sEH inhibitors. This assay is based on the technology of fluorescence polarization (FP), utilizing a Cy3B labeled 14,15-DHET ligand and a rabbit anti-14,15-DHET antibody. With the optimized assay, we measured the cellular sEH activity of several cell lines expressing endogenous sEH as well as sEH BacMam transduced HEK-293 cells. The inhibitory effect of several known sEH inhibitors was evaluated in sEH BacMam transduced HEK-293 cells. Our data show that there is good agreement of pIC50 values obtained between the FP format and a commercially available ELISA kit. To our knowledge, this is the first report of a high throughput cell-based assay for screening sEH inhibitors.

Collaboration


Dive into the Quinn Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge