Quintin Blood
Loma Linda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quintin Blood.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013
Arlin B. Blood; Michael H. Terry; Travis A. Merritt; Demosthenes G. Papamatheakis; Quintin Blood; Jonathon M. Ross; Gordon G. Power; Lawrence D. Longo; Sean M. Wilson
Exposure to chronic hypoxia during gestation predisposes infants to neonatal pulmonary hypertension, but the underlying mechanisms remain unclear. Here, we test the hypothesis that moderate continuous hypoxia during gestation causes changes in the rho-kinase pathway that persist in the newborn period, altering vessel tone and responsiveness. Lambs kept at 3,801 m above sea level during gestation and the first 2 wk of life were compared with those with gestation at low altitude. In vitro studies of isolated pulmonary arterial rings found a more forceful contraction in response to KCl and 5-HT in high-altitude compared with low-altitude lambs. There was no difference between the effects of blockers of various pathways of extracellular Ca(2+) entry in low- and high-altitude arteries. In contrast, inhibition of rho-kinase resulted in significantly greater attenuation of 5-HT constriction in high-altitude compared with low-altitude arteries. High-altitude lambs had higher baseline pulmonary artery pressures and greater elevations in pulmonary artery pressure during 15 min of acute hypoxia compared with low-altitude lambs. Despite evidence for an increased role for rho-kinase in high-altitude arteries, in vivo studies found no significant difference between the effects of rho-kinase inhibition on hypoxic pulmonary vasoconstriction in intact high-altitude and low-altitude lambs. We conclude that chronic hypoxia in utero results in increased vasopressor response to both acute hypoxia and serotonin, but that rho-kinase is involved only in the increased response to serotonin.
Pulmonary circulation | 2012
Demosthenes G. Papamatheakis; Jay Patel; Quintin Blood; Travis Merritt; Lawrence D. Longo; Sean M. Wilson
Membrane depolarization is critical to pulmonary arterial (PA) contraction. Both L-type Ca2+ channels (CaL) and Rho-kinase are important signaling components of this process and mitochondrial and non-mitochondrial generated superoxides can be part of the signaling process. Maturation and long-term hypoxia (LTH) each can modify depolarization-dependent contraction and the role of superoxides. By the use of wire myography, we tested the hypothesis that maturation and LTH increase pulmonary arterial reactivity to high-K+-induced membrane depolarization through enhancements in the importance of CaL and Rho-kinase-dependent pathways. The data show that maturation, but not LTH, increases contraction to 125 mM KCl (high-K+) without altering the EC50. High-K+-dependent contraction was inhibited to a similar extent in fetal and adult PA by multiple CaL blockers, including 10 μM diltiazem, 10 μM verapamil, and 10 μM nifedipine. Postnatal maturation increased the role for 10 μM nifedipine-sensitive CaL, and decreased that for 10 μM Y-27632-sensitive Rho-kinase. In all groups, the combination of nifedipine and Y-27632 effectively inhibited high-K+ contraction. Tempol (3 mM) but not 100 μM apocynin slightly reduced contraction in arteries from fetal hypoxic and adult normoxic and hypoxic sheep, indicating a limited role for non-mitochondrial derived superoxide to high-K+-induced contraction. Western immunoblot for alpha smooth muscle actin indicated small increases in relative abundance in the adult. The data suggest that while CaL therapies more effectively vasodilate PA in adults and rho-kinase therapies are more effective in newborns, combination therapies would provide greater efficacy in both young and mature patients regardless of normoxic or hypoxic conditions.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2012
Scott R. Hadley; Quintin Blood; Monica Rubalcava; Edith Waskel; Britney Lumbard; Petersen Le; Lawrence D. Longo; John N. Buchholz; Sean M. Wilson
Ca(2+) sparks are fundamental Ca(2+) signaling events arising from ryanodine receptor (RyR) activation, events that relate to contractile and dilatory events in the pulmonary vasculature. Recent studies demonstrate that long-term hypoxia (LTH) can affect pulmonary arterial reactivity in fetal, newborn, and adult animals. Because RyRs are important to pulmonary vascular reactivity and reactivity changes with ontogeny and LTH we tested the hypothesis that RyR-generated Ca(2+) signals are more active before birth and that LTH suppresses these responses. We examined these hypotheses by performing confocal imaging of myocytes in living arteries and by performing wire myography studies. Pulmonary arteries (PA) were isolated from fetal, newborn, or adult sheep that lived at low altitude or from those that were acclimatized to 3,801 m for > 100 days. Confocal imaging demonstrated preservation of the distance between the sarcoplasmic reticulum, nucleus, and plasma membrane in PA myocytes. Maturation increased global Ca(2+) waves and Ca(2+) spark activity, with sparks becoming larger, wider, and slower. LTH preferentially depressed Ca(2+) spark activity in immature pulmonary arterial myocytes, and these sparks were smaller, wider, and slower. LTH also suppressed caffeine-elicited contraction in fetal PA but augmented contraction in the newborn and adult. The influence of both ontogeny and LTH on RyR-dependent cell excitability shed new light on the therapeutic potential of these channels for the treatment of pulmonary vascular disease in newborns as well as adults.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2016
Carla Blum-Johnston; Richard B. Thorpe; Chelsea Wee; Monica Romero; Alexander Brunelle; Quintin Blood; Rachael Wilson; Arlin B. Blood; Michael Francis; Mark S. Taylor; Lawrence D. Longo; William J. Pearce; Sean M. Wilson
Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.
High Altitude Medicine & Biology | 2011
Demosthenes G. Papamatheakis; Srilakshmi Vemulakonda; Quintin Blood; Ravi Goyal; Monica Rubalcava; Kurt Vrancken; Allison Bennett; Antoinette Dawson; Noah Osman; Arlin B. Blood; William J. Pearce; Lawrence D. Longo; Sean M. Wilson
Long-term hypoxia (LTH) can increase serotonin (5-HT) signaling as well as extracellular calcium entry in adult rodent pulmonary arteries (PA), and 5-HT is associated with pulmonary hypertension. Because LTH, 5-HT, and calcium entry are related, we tested the hypothesis that LTH increases 5-HT-mediated PA contractility and associated calcium influx through L-type Ca2+ channels, nonselective cation channels (NSCC), and reverse-mode sodium-Ca2+ exchange. We performed wire myography and confocal calcium imaging on pulmonary arteries from adult ewes that lived near sea level or were maintained at high-altitude (3801 m) for ∼110 days. LTH did not increase the arterial medial wall thickness, nor did it affect the potency or efficacy for 5-HT-induced PA contraction. Ketanserin (100 nM), a 5-HT2A antagonist, shifted the 5-HT potency to a far greater extent than 1 μM GR-55562, a 5-HT1B/D inhibitor. These influences were unaffected by LTH. The rank order for reducing 5-HT-induced PA contraction in normoxic animals was extracellular calcium removal≈10 mM Ni2+≈10 μM verapamil≈10 μM nifedipine with 50 μM SKF 96365>30 μM KB-R7943≈100 μM flufenamic acid≈10 μM nifedipine≈100 μM Gd3+> 100 μM La3+>500 μM Ni2+≈10 μM diltiazem≈50 μM 2-APB≈100 μM LOE 908. Contraction was not reduced by 100 μM spermine or 30 μM SN-6. LTH increased the effects of KB-R7943 and mitigated those of nifedipine but did not affect calcium responses in imaging studies. Overall, in adult sheep, arterial structure and 5-HT2A and 5HT1B/D functions are preserved following LTH while the role of NSCC-related calcium-dependent contraction is increased. These elements indicate preservation of PA contractility in LTH with minimal functional changes.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018
Carla Blum-Johnston; Richard B. Thorpe; Chelsea Wee; Raechel Opsahl; Monica Romero; Samuel T. Murray; Alexander Brunelle; Quintin Blood; Rachael Wilson; Arlin B. Blood; Lubo Zhang; Lawrence D. Longo; William J. Pearce; Sean M. Wilson
Bradykinin-induced activation of the pulmonary endothelium triggers a rise in intracellular Ca2+ that activates nitric oxide (NO)-dependent vasorelaxation. Chronic hypoxia is commonly associated with increased pulmonary vascular tone, which can cause pulmonary hypertension in responsive individuals. In the present study, we tested the hypothesis that long-term high-altitude hypoxia (LTH) diminishes bradykinin-induced Ca2+ signals and inhibits endothelial nitric oxide synthase (eNOS), prostacyclin (PGI2), and large-conductance K+ (BKCa) channels in sheep, which are moderately responsive to LTH, resulting in decreased pulmonary arterial vasorelaxation. Pulmonary arteries were isolated from ewes kept near sea level (720 m) or at high altitude (3,801 m) for >100 days. Vessel force was measured with wire myography and endothelial intracellular Ca2+ with confocal microscopy. eNOS was inhibited with 100 μM NG-nitro-l-arginine methyl ester (l-NAME), PGI2 production was inhibited with 10 µM indomethacin that inhibits cyclooxygenase, and BKCa channels were blocked with 1 mM tetraethylammonium. Bradykinin-induced endothelial Ca2+ signals increased following LTH, but bradykinin relaxation decreased. Furthermore, some vessels contracted in response to bradykinin after LTH. l-NAME sensitivity decreased, suggesting that eNOS dysfunction played a role in uncoupling Ca2+ signals and bradykinin relaxation. The Ca2+ ionophore A-23187 (10 µM) elicited an enhanced Ca2+ response following LTH while relaxation was unchanged although l-NAME sensitivity increased. Additionally, BKCa function decreased during bradykinin relaxation following LTH. Western analysis showed that BKCa α-subunit expression was increased by LTH while that for the β1 subunit was unchanged. Overall, these results suggest that those even moderately responsive to LTH can have impaired endothelial function.
The FASEB Journal | 2017
Carla Blum-Johnston; Monica Romero; Chelsea Wee; Quintin Blood; Rachael Wilson; Arlin B. Blood; Michael Francis; Mark S. Taylor; Lawrence D. Longo; Sean M. Wilson
The FASEB Journal | 2015
Alexander Brunelle; Carla Blum-Johnston; Chelsea Wee; Quintin Blood; Rachael Wilson; Monica Romero; Michael M. Francis; Mark John Taylor; Lawrence D. Longo; Sean M. Wilson
The FASEB Journal | 2014
Ricardo Paez; Monica Romero; Quintin Blood; Noah Osman; Chetas Manjunath; Shane Glasgow; Michael Francis; Mark S. Taylor; Lawerence Longo; Sean M. Wilson
The FASEB Journal | 2014
Carla Blum-Johnston; Chelsea Wee; Quintin Blood; Rachael Wilson; Arlin B. Blood; Lawerence Longo; Sean M. Wilson