Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qun Shan is active.

Publication


Featured researches published by Qun Shan.


Neurobiology of Learning and Memory | 2008

Purple sweet potato color repairs d-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins

Dong-Mei Wu; Jun Lu; Yuan-Lin Zheng; Zhong Zhou; Qun Shan; Daifu Ma

Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins used to color food (E163), has been reported to possess a variety of biological activities, including anti-oxidant, anti-tumor, and anti-inflammatory. The effect of PSPC on the spatial learning and memory of mice treated with d-galactose (d-gal) was evaluated by the Morris water maze; d-gal-treated mice had decreased performance compared with mice in the vehicle and PSPC groups, while the PSPC+d-gal group showed significantly shortened escape latency to platform, increased swimming speed, more target quadrant search time and more platform crossings as compared with the d-gal group. Brain functions, such as memory formation and recovery of function after injury, depend on proper regulation of the expression levels of the pre- and post-synaptic proteins. We investigated the expression of four pre-synaptic proteins (growth-associated protein-43, synapsin-I, synaptophysin, and synaptotagmin) and two post-synaptic proteins (post-synaptic density protein-95 and Ca(2+)/calmodulin-dependent protein kinase II) in the hippocampus and cerebral cortex, respectively, in response to different treatments. Western blotting analysis showed that there were significant decreases in the expression of these representative synaptic proteins in the hippocampus and cerebral cortex of d-gal-treated mice. Interestingly, these decreased expression levels of synaptic proteins could be reversed by PSPC. The levels of expression of these representative synaptic proteins in mice treated with PSPC alone were not significantly different from those in untreated mice. The results of this study suggested that memory impairment and synaptic protein loss in d-gal-treated mice may be improved by treatment with PSPC.


Food and Chemical Toxicology | 2009

Purple sweet potato color attenuates oxidative stress and inflammatory response induced by d-galactose in mouse liver

Zi-Feng Zhang; Shao-Hua Fan; Yuan-Lin Zheng; Jun Lu; Dong-Mei Wu; Qun Shan; Bin Hu

The hepatoprotective effects of purple sweet potato color (PSPC), which is natural anthocyanin food colors, have been well demonstrated in many studies. Nevertheless, little work has been done to clarify the detailed mechanism of hepatoprotective effects of PSPC. This study was designed to explore whether PSPC protected mouse liver from d-gal-induced injury by attenuating oxidative stress or suppressing inflammation. The histology changes of mouse liver was assessed by hematoxylin and eosin staining. The results showed that PSPC could effectively suppress the d-gal-induced histology changes including structure damage and leucocyte infiltration in mouse liver. Oxidative stress and antioxidant status in mouse liver were also analysed. The results showed that PSPC could largely attenuate the d-gal-induced MDA increasing and could markedly renew the activities of Cu, Zn-SOD, CAT and GPx in the livers of d-gal-treated mice. Furthermore, the results of western blot analysis showed that PSPC could inhibit the upregulation of the expression of NF-kappaB p65, COX-2 and iNOS caused by d-gal. In conclusion, our data suggested that PSPC could protect the mouse liver from d-gal-induced injury by attenuating lipid peroxidation, renewing the activities of antioxidant enzymes and suppressing inflammatory response. This study provided novel insights into the mechanisms of PSPC in the protection of the liver.


International Immunopharmacology | 2009

Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation

Shao-Hua Fan; Zi-Feng Zhang; Yuan-Lin Zheng; Jun Lu; Dong-Mei Wu; Qun Shan; Bin Hu; Yan-yan Wang

This study was carried out to investigate the protective effect of troxerutin against D-galactose (D-gal)-induced renal injury in mice. Hematoxylin and eosin (H&E) stained sections of kidneys revealed D-gal could cause renal injury and troxerutin could significantly attenuate the injury. We further investigated the mechanisms involved in the protective effects of troxerutin on mouse kidney. The following antioxidant defense enzymes were measured: cytosolic Cu/Zn superoxide dismutase (SOD-1), catalase (CAT) and glutathione peroxidase (GPx). The content of the lipid peroxidation product malondialdehyde (MDA) was also analyzed. In D-gal-treated mice, antioxidant enzymes activities were significantly decreased and the level of MDA was significantly higher than those in the vehicle controls. Our results indicated that the protective effect of troxerutin against D-gal induced renal injury might be caused, at least in part, by increasing the activity of antioxidant enzymes with a reduction in lipid peroxidation product. Furthermore, we also examined the inflammatory signal mediators of nuclear factor-kappaB (NF-kappaB), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanoid receptor subtype EP2 by Western blot. After treatment with D-gal, the NF-kappaB p65, iNOS, COX-2 and EP2 were markedly upregulated. Upon co-treatment with the troxerutin, however, the expressions of the NF-kappaB p65, iNOS, COX-2 and EP2 markedly reduced, compared to D-gal treatment alone. These results indicated that troxerutin has significantly inhibitory effects on the NF-kappaB-mediated inflammatory response. These findings suggest troxerutin could attenuate renal injury induced by D-gal probably through its antioxidant and anti-inflammation properties.


Brain Behavior and Immunity | 2011

Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IκB kinase β/nuclear factor-κB-mediated inflammatory pathways in mice

Jun Lu; Dong-Mei Wu; Yuan-Lin Zheng; Bin Hu; Wei Cheng; Zi-Feng Zhang; Qun Shan

Evidence suggests that obesity-induced cognitive impairments are driven by in brain inflammatory responses and inflammation-mediated brain insulin resistance. Ursolic acid (UA), a triterpenoid compound, has many important biological functions, including antioxidant and anti-inflammatory activities. Here, we evaluated the effect of UA on cognitive impairment induced by a high-fat diet (HFD), and we explored the potential mechanisms mediating this effect. Results showed that UA administration significantly improved the behavioral performance of C57/BL6J mice fed a HFD in both the step-through test and the Morris water maze task. These results were associated with the inhibition of endoplasmic reticulum stress and IκB kinase β/nuclear factor-κB-mediated inflammatory signaling and the restoration of insulin signaling and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. UA administration also increased memory-related protein expression in the hippocampus of mice given a HFD. However, the neuroprotective effects of UA were blocked by an intracerebroventricular (i.c.v.) injection of PI-103, a specific PI3K 110α inhibitor. These results suggest that UA may be a potent candidate for the prevention and treatment of cognitive deficits caused by type 2 diabetes.


Neurobiology of Learning and Memory | 2010

Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system.

Jun Lu; Dong-Mei Wu; Bin Hu; Wei Cheng; Yuan-Lin Zheng; Zi-Feng Zhang; Qin Ye; Shao-Hua Fan; Qun Shan; Yong-jian Wang

Previous evidence showed that administration of d-galactose (d-gal) increased ROS production and resulted in impairment of cholinergic system. Troxerutin, a natural bioflavonoid, has been reported to have many benefits and medicinal properties. In this study, we evaluated the protective effect of troxerutin against d-gal-induced impairment of cholinergic system, and explored the potential mechanism of its action. Our results displayed that troxerutin administration significantly improved behavioral performance of d-gal-treated mice in step-through test and morris water maze task. One of the potential mechanisms of this action was decreased AGEs, ROS and protein carbonyl levels in the basal forebrain, hippocampus and front cortex of d-gal-treated mice. Furthermore, our results also showed that troxerutin significantly inhibited cholinesterase (AchE) activity, increased the expression of nicotinic acetylcholine receptor alpha 7 (nAchRalpha7) and enhanced interactions between nAchRalpha7 and either postsynaptic density protein 95 (PSD95) or N-methyl-d-aspartate receptors subunit 1 (NMDAR1) in the basal forebrain, hippocampus and front cortex of d-gal-treated mice, which could help restore impairment of brain function.


BioMed Research International | 2009

Purple Sweet Potato Color Ameliorates Cognition Deficits and Attenuates Oxidative Damage and Inflammation in Aging Mouse Brain Induced by D-Galactose

Qun Shan; Jun Lu; Yuan-Lin Zheng; Jing Li; Zhong Zhou; Bin Hu; Zifeng Zhang; Shaohua Fan; Zhen Mao; Yong-jian Wang; Daifu Ma

Purple sweet potato color (PSPC), a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal). The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week) via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks). We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), inhibited nuclear translocation of nuclear factor-kappaB (NF-κB), increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD) and catalase (CAT), and reduced the content of malondialdehyde (MDA), respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.


Journal of Agricultural and Food Chemistry | 2009

Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose.

Zi-Feng Zhang; Shao-Hua Fan; Yuan-Lin Zheng; Jun Lu; Dong-Mei Wu; Qun Shan; Bin Hu

Troxerutin, a trihydroxyethylated derivative of rutin, has been well-demonstrated to exert hepatoprotective properties. In the present study, we attempted to explore whether the antioxidant and anti-inflammatory mechanisms were involved in troxerutin-mediated protection from D-gal-induced liver injury. The effects of troxerutin on liver lipid peroxidation, antioxidant enzymatic activities, and the expression of inflammatory mediator were investigated in D-gal-treated mice. The results showed that troxerutin largely attenuated the D-gal-induced TBARS content increase and also markedly renewed the activities of Cu, Zn-SOD, CAT, and GPx in the livers of D-gal-treated mice. Furthermore, troxerutin inhibited the upregulation of the expression of NF-kappaB p65, iNOS, and COX-2 induced by D-gal. D-Gal-induced tissue architecture changes and serum ALT and AST increases were effectively suppressed by troxerutin. In conclusion, these results suggested that troxerutin could protect the mouse liver from D-gal-induced injury by attenuating lipid peroxidation, renewing the activities of antioxidant enzymes and suppressing inflammatory response. This study provided novel insights into the mechanisms of troxerutin in the protection of the liver.


Brain Behavior and Immunity | 2009

Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway

Jun Lu; Dong-Mei Wu; Yuan-Lin Zheng; Dong-xu Sun; Bin Hu; Qun Shan; Zi-Feng Zhang; Shao-Hua Fan

Evidence has been gathered to suggest that trace amounts of copper induce neurotoxicity by interaction with elevated cholesterol in diet. Step-through task and Morris water maze task were used to evaluate cognitive function in the animals. Although a 16-week copper treatment alone in mice showed no significant change in learning and memory performances, cholesterol treatment significantly induced learning and memory impairments, which could be exacerbated by the co-treatment with copper. Immunohistochemical studies revealed that trace amounts of copper further stimulated the amyloid precursor protein (APP) upregulation and contributed to amyloid beta-peptide (Abeta) deposition in the brain of cholesterol-fed mice. Western blot analysis showed that copper also increased the protein expression levels of tumor necrosis factor-alpha (TNF-alpha) and the degradation of IkappaB proteins in the brain of cholesterol-fed mice. Furthermore, increased production of high inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expressions were detected in the hippocampus and cerebral cortex of copper and cholesterol co-treated mice by immunohistochemical analysis. These findings suggest that trace amounts of copper could induce APP upregulation, activate inflammatory pathway and exacerbate neurotoxicity in cholesterol-fed mice.


Food and Chemical Toxicology | 2010

Purple sweet potato color protects mouse liver against d-galactose-induced apoptosis via inhibiting caspase-3 activation and enhancing PI3K/Akt pathway.

Zi-Feng Zhang; Jun Lu; Yuan-Lin Zheng; Bin Hu; Shao-Hua Fan; Dong-Mei Wu; Zi-hui Zheng; Qun Shan; Chan-Min Liu

Purple sweet potato color (PSPC) has been shown to possess hepatoprotective effects in our previous study. To clarify the detailed mechanism of hepatoprotective effects of PSPC, we investigated the potential protective effect of PSPC against caspase-3 activation induced by d-gal, as well as its influence on Bcl-2 levels and PI3K/Akt cell survival pathway. The results of TUNEL assay showed that PSPC effectively suppressed the d-gal-induced hepatocytes apoptosis, suggesting that anti-apoptosis mechanism was involved in PSPC-mediated protection against d-gal-induced liver injury in mouse. PSPC significantly increased GSH levels and promoted a marked increase in the activities of GSH related enzymes including GR, GST in d-gal-treated mice. The activation and activity of caspase-3 were markedly inhibited by the treatment of PSPC in the livers of d-gal-treated mice. Furthermore, the level of Bcl-2 was significantly raised, and the levels of PI3K p110 and phosphorylated Akt were also largely enhanced by the treatment of PSPC in the livers of d-gal-treated mice. In conclusion, these results suggested that PSPC could protect mouse liver against d-gal-induced hepatocyte apoptosis via attenuating oxidative stress, inhibiting the activation of caspase-3 and enhancing cell survival signaling (enhancing the level of anti-apoptotic protein Bcl-2 and the activation of PI3K/Akt pathway).


PLOS ONE | 2014

Luteoloside Suppresses Proliferation and Metastasis of Hepatocellular Carcinoma Cells by Inhibition of NLRP3 Inflammasome

Shao-Hua Fan; Yan-yan Wang; Jun Lu; Yuan-Lin Zheng; Dong-Mei Wu; Meng-Qiu Li; Bin Hu; Zi-Feng Zhang; Wei Cheng; Qun Shan

The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC) is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS) accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC.

Collaboration


Dive into the Qun Shan's collaboration.

Top Co-Authors

Avatar

Yuan-Lin Zheng

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Dong-Mei Wu

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Jun Lu

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Zi-Feng Zhang

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Shao-Hua Fan

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Bin Hu

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Chun-Hui Sun

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Meng-Qiu Li

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Xin Wen

Jiangsu Normal University

View shared research outputs
Top Co-Authors

Avatar

Xin-Rui Han

Jiangsu Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge