Qun Yan
Jiangnan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qun Yan.
Bioresource Technology | 2010
Qun Yan; Minxing Zhao; Hengfeng Miao; Wenquan Ruan; Rentao Song
Coupling bio-production of hydrogen and polyhydroxyalkanoates (PHA) from Taihu blue algae through metabolites circulation was investigated. It was found that the pH adjustment, especially basification was more practical and efficient than other methods for the pretreatment of blue algae before anaerobic digestion. On this occasion, SCOD, biogas accumulation and hydrogen content reached 26 mg/gTS, 500 mL and 37.2%, and which were 4.3, 1.3 and 14.4 times of those of the control group, respectively. Secondly, amounts of both butyric acid and hydrogen could be further increased when blue algae was alkali pretreated at pH 13, as the accumulation of butyric acid, acetic acid and hydrogen reached 1.7, 1.4 and 3.8 times compared to those of the control, respectively. Finally, the coupling bio-production of hydrogen and PHA was conducted through pumping organic residues into PHA fermenter from anaerobic digester. Remarkably, it was found that the larger the pumping rate of carbon and nitrogen sources supply, the higher the yield of DCW and PHA could be expected by Bacillus cereus.
Bioresource Technology | 2013
Hengfeng Miao; Minfeng Lu; Mingxing Zhao; Zhenxing Huang; Hongyan Ren; Qun Yan; Wenquan Ruan
Taihu blue algae after different storage time from 0 to 60 d were anaerobic fermented to evaluate their digestibility and process stability. Results showed that anaerobic digestion (AD) of blue algae under 15 d natural storage led to the highest CH4 production of 287.6 mL g(-1) VS at inoculum substrate ratio 2.0, demonstrating 36.69% improvement comparing with that from fresh algae. Storage of blue algae led to cell death, microcystins (MCs) release and VS reduction by spontaneous fermentation. However, it also played an important role in removing algal cell wall barrier, pre-hydrolysis and pre-acidification, leading to the improvement in CH4 yield. Closer examination of volatile fatty acids (VFA) variation, VS removal rates and key enzymes change during AD proved short storage time (≤ 15 d) of blue algae had higher efficiencies in biodegradation and methanation. Furthermore, AD presented significant biodegradation potential for MCs released from Taihu blue algae.
Bioresource Technology | 2013
Fei Sun; Hao Liu; Bin Liang; Rentao Song; Qun Yan; Aijie Wang
Reductive degradation of choramphenicol (CAP) using Bioelectrochemical system (BES) with both abiotic cathode and biocathode was investigated. It was found that the CAP reduction efficiency during the first 24 h reached 86.3% of the biocathode group, while which was only 62.9% in the case of abiotic cathode. Except for the cathode potential, other indicators of the cathode performance as the cathode current, the current response of the cyclic voltammetry, the ohm resistance, and the polarization resistance of the biocathode group were all better than those of the abiotic group. Moreover, specific CAP reductive rate of the biocathode with sludge fermentation liquid (0.199 h(-1)) as carbon source was close to that of the glucose (0.215 h(-1)), but was about 3.2 times of the abiotic cathode group (0.062 h(-1)). It suggested that the introduction of biocathode would better the cathode performance, and then further increase the CAP reduction.
Bioresource Technology | 2016
Ting Ling; Bin Huang; Mingxing Zhao; Qun Yan; Wei Shen
Composite Fe2O3/ACF electrode facilitated methyl orange (MO) oxidative degradation using bio-electro-Fenton in bioelectrochemical system (BES) was investigated. Characterized by both XPS and FT-IR techniques, it was found that the composite Fe2O3/ACF electrode with highest Fe loading capacity of 11.02% could be prepared after the carbon felt was oxidized with nitric acid. Moreover, hydrogen peroxide production reached steadily at 88.63 μmol/L with the external resistance as 100 Ω, cathodic aeration rate at 750 mL/min, and the pH of the bio-electro-Fenton system adjusted to 2. Significantly, not only the electrochemical profiles of the BES reactor as electrochemical impedance spectroscopy (EIS) was bettered, but the MO oxidative degradation could be accomplished for eight repeated batches, with the MO removal efficiency varied slightly from 73.9% to 86.7%. It indicated that the bio-electro-Fenton might be a promising eco-friendly AOP method for Azo-dye wastewater treatment.
Environmental Technology | 2011
Mingxing Zhao; Qun Yan; Wenquan Ruan; Hengfeng Miao; Hongyan Ren; Yan Xu
Pretreatment at different pHs was adopted in this study to enhance the substance solubilization and hydrogen production from kitchen wastes through anaerobic digestion. After a pretreatment set at pH = 13, solubilization of kitchen wastes improved substantially as the concentration of soluble carbohydrate, soluble protein, lipids and soluble chemical oxygen demand increased by 283.1%, 203.2%, 259.1% and 108.2%, respectively, as compared with those of the control. The maximum hydrogen production potential reached 105.38 mL/g VS after the pretreatment, which was 2.66 times that of the control. Furthermore, butyric acid and acetic acid were the major components in the total metabolites after fermentation, while propionic acid had a relatively low concentration. Finally, the concentration of exoprotein and exopolysaccharide within extracellular polymeric substances (EPS) kept increasing during the initial 14 and 9 hours, respectively, then decreased afterwards. However, the concentration of DNA increased throughout the whole stage. The total EPS might indirectly indicate the anaerobic digestion process. These findings may represent a feasible method for high‐quality treatment of kitchen wastes.
Journal of Hazardous Materials | 2012
Qun Yan; Yongcan Li; Bin Huang; Aijie Wang; Hua Zou; Hengfeng Miao; Rongqing Li
Enhanced biomethanation with acid stress on anaerobic sludge, dehydrogenase activity, protein expression, and the primary proteomic profiling of microbial communities during the enhanced anaerobic digestion process from Taihu Blue Algae were investigated. It was found that the accumulation of organic acids and the specific biogas accumulation rate were 1.8 and 1.3 times of the control, when 10 g/L and 7.5 g/L of butyrate were selected for acid stress, respectively. Meanwhile, dehydrogenase activity of the 7.5 g/L acid stress group exhibited an increase of 1.6 times of the control, and protein expression was also found to be enhanced sharply as revealed by 1D-PAGE. Finally, twenty of the matched protein spots through 2D-PAGE from both the control and the 7.5 g/L stress groups were identified by MALDI-TOF MS, and five of which were proved to be involved in bioenergy metabolism. Significantly, ATR related proteins might be induced as the pIs of which were acidic as 5.92, 5.51 and 5.54, respectively.
Bioresource Technology | 2014
Hao Liu; Qun Yan; Wei Shen
Reductive removal of nitrate in bioelectrochemical system (BES) at abiotic cathode, biocathode and biohydrogen facilitated biocathode were investigated. It was found that nitrate removal efficiency reached 95% and 59% at the biohydrogen facilitated biocathode and biocathode respectively, while which was only 13% at the abiotic cathode. Meanwhile, activity of nitrate reductase reached 0.701 g-N/Lh for the biohydrogen facilitated group, which was about 9.3 times of the biocathode group. Moreover, electrochemical performances as power density, ohmic resistance, and polarization resistance of the biohydrogen facilitated group reached 76.96 mW/m(3), 8.63 ohm and 383 ohm, respectively, which were better than two other groups. Finally, an obvious shift of bacterial community responsible for the enhanced nitrate reduction between the two biocathode groups was observed. Therefore, nitrate reduction in BES could be enhanced at the biocathode than that of the abiotic cathode, and then be further boosted with the combination of biohydrogen.
Energy Sources Part A-recovery Utilization and Environmental Effects | 2012
Mingxing Zhao; Qun Yan; Wenquan Ruan; Hengfeng Miao; Hongyan Ren; Yan Xu
Abstract Analysis of sequential hydrogen-methane and independent methane production were carried out in this study to investigate the optimal bio-energy production from kitchen wastes. The study indicated that production of hydrogen and the sequential methane achieved 75.0 and 287.4 mL/gVS, respectively, during the sequential hydrogen-methane process. Specifically, the sequential methane increased by 34.0% compared to independent methane production. Additionally, the measured concentration of total organic acids increased to 13,599.8 mg/L at the end of hydrogen fermentation, then decreased to 4,284.9 mg/L at the end of the sequential methane process. The major acid component was butyric acid in the sequential methane process as opposed to acetic acid in an independent process. Remarkably, it was found that the major component of extracellular polymeric substances in hydrogen producing sludge was exopolysaccharide, while in both methane producing processes it was exoprotein. The maximum measured concentration of exoprotein and exopolysaccharide reached to 84.3, 36.3 mg/gVS and 63.4, 30.4 mg/gVS, while DNA increased throughout the stages of the two methane processes. These findings may represent a feasible method for high energy achievement from kitchen wastes.
Bioresource Technology | 2014
Xiaoqin Lin; Yan Xia; Qun Yan; Wei Shen; Mingxing Zhao
Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.
Bioresource Technology | 2018
Xinmei Yan; Chunyan Zhu; Bin Huang; Qun Yan; Guangsheng Zhang
Consisted of anaerobic (ANA), anoxic-1 (AN1), aerobic-1 (AE1), anoxic-2 (AN2), aerobic-2 (AE2) reactors and sediment tank, the two-staged A/O process was applied for depth treatment of electroplating tail wastewater with high electrical conductivity and large amounts of ammonia nitrogen. It was found that the NH4+-N and COD removal efficiencies reached 97.11% and 83.00%, respectively. Besides, the short-term salinity shock of the control, AE1 and AE2 indicated that AE1 and AE2 have better resistance to high salinity when the concentration of NaCl ranged from 1 to 10g/L. Meanwhile, it was found through high-throughput sequencing that bacteria genus Nitrosomonas, Nitrospira and Thauera, which are capable of nitrogen removal, were enriched in the two-staged A/O process. Moreover, both salt-tolerant bacteria and halophili bacteria were also found in the combined process. Therefore, microbial community within the two-staged A/O process could be acclimated to high electrical conductivity, and adapted for electroplating tail wastewater treatment.