Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qun Ying Lei is active.

Publication


Featured researches published by Qun Ying Lei.


Cancer Cell | 2011

Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases

Wei Xu; Hui Yang; Ying Liu; Ying Yang; Ping Wang; Se Hee Kim; Shinsuke Ito; Chen Yang; Pu Wang; Meng Tao Xiao; Li Xia Liu; Wen Qing Jiang; Jing Liu; Jin Ye Zhang; Bin Wang; Stephen V. Frye; Yi Zhang; Yanhui Xu; Qun Ying Lei; Kun-Liang Guan; Shimin Zhao; Yue Xiong

IDH1 and IDH2 mutations occur frequently in gliomas and acute myeloid leukemia, leading to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG), respectively. Here we demonstrate that 2-HG is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hydroxylases. 2-HG occupies the same space as α-KG does in the active site of histone demethylases. Ectopic expression of tumor-derived IDH1 and IDH2 mutants inhibits histone demethylation and 5mC hydroxylation. In glioma, IDH1 mutations are associated with increased histone methylation and decreased 5-hydroxylmethylcytosine (5hmC). Hence, tumor-derived IDH1 and IDH2 mutations reduce α-KG and accumulate an α-KG antagonist, 2-HG, leading to genome-wide histone and DNA methylation alterations.


Science | 2010

Regulation of Cellular Metabolism by Protein Lysine Acetylation

Shimin Zhao; Wei Xu; Wenqing Jiang; Wei Yu; Yan Lin; Tengfei Zhang; Jun Yao; Li Zhou; Yaxue Zeng; Hong Li; Yixue Li; Jiong Shi; Wenlin An; Susan M. Hancock; Fuchu He; Lunxiu Qin; Jason W. Chin; Pengyuan Yang; Xian Chen; Qun Ying Lei; Yue Xiong; Kun-Liang Guan

Metabolic Regulation Through Acetylation Covalent modification of lysine residues in various proteins in the nucleus is a recognized mechanism for control of transcription. Now two papers suggest that acetylation may represent an important regulatory mechanism controlling the function of metabolic enzymes (see the Perspective by Norvell and McMahon). Zhao et al. (p. 1000) found that a large proportion of enzymes in various metabolic pathways were acetylated in human liver cells. Acetylation regulated various enzymes by distinct mechanisms, directly activating some, inhibiting one, and controlling the stability of another. Control of metabolism by acetylation appears to be evolutionarily conserved: Wang et al. (p. 1004) found that the ability of the bacterium Salmonella entericum to optimize growth on distinct carbon sources required differential acetylation of key metabolic enzymes, thus controlling flux through metabolic pathways. Regulation of enzymes by acetylation controls metabolic function in human liver cells. Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue. The concentration of metabolic fuels, such as glucose, amino acids, and fatty acids, influenced the acetylation status of metabolic enzymes. Acetylation activated enoyl–coenzyme A hydratase/3-hydroxyacyl–coenzyme A dehydrogenase in fatty acid oxidation and malate dehydrogenase in the TCA cycle, inhibited argininosuccinate lyase in the urea cycle, and destabilized phosphoenolpyruvate carboxykinase in gluconeogenesis. Our study reveals that acetylation plays a major role in metabolic regulation.


Science | 2009

Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α

Shimin Zhao; Yan Lin; Wei Xu; Wenqing Jiang; Zhengyu Zha; Pu Wang; Wei Yu; Zhiqiang Li; Lingling Gong; Yingjie Peng; Jianping Ding; Qun Ying Lei; Kun-Liang Guan; Yue Xiong

Heterozygous mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) occur in certain human brain tumors, but their mechanistic role in tumor development is unknown. We have shown that tumor-derived IDH1 mutations impair the enzymes affinity for its substrate and dominantly inhibit wild-type IDH1 activity through the formation of catalytically inactive heterodimers. Forced expression of mutant IDH1 in cultured cells reduces formation of the enzyme product, α-ketoglutarate (α-KG), and increases the levels of hypoxia-inducible factor subunit HIF-1α, a transcription factor that facilitates tumor growth when oxygen is low and whose stability is regulated by α-KG. The rise in HIF-1α levels was reversible by an α-KG derivative. HIF-1α levels were higher in human gliomas harboring an IDH1 mutation than in tumors without a mutation. Thus, IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway.


Genes & Development | 2010

The Hippo–YAP pathway in organ size control and tumorigenesis: an updated version

Bin Zhao; Li Li; Qun Ying Lei; Kun-Liang Guan

The Hippo signaling pathway is gaining recognition as an important player in both organ size control and tumorigenesis, which are physiological and pathological processes that share common cellular signaling mechanisms. Upon activation by stimuli such as high cell density in cell culture, the Hippo pathway kinase cascade phosphorylates and inhibits the Yes-associated protein (YAP)/TAZ transcription coactivators representing the major signaling output of the pathway. Altered gene expression resulting from YAP/TAZ inhibition affects cell number by repressing cell proliferation and promoting apoptosis, thereby limiting organ size. Recent studies have provided new insights into the Hippo signaling pathway, elucidating novel phosphorylation-dependent and independent mechanisms of YAP/Yki inhibition by the Hippo pathway, new Hippo pathway components, novel YAP target transcription factors and target genes, and the three-dimensional structure of the YAP-TEAD complex, and providing further evidence for the involvement of YAP and the Hippo pathway in tumorigenesis.


Molecular and Cellular Biology | 2008

TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway

Qun Ying Lei; Heng Zhang; Bin Zhao; Zheng Yu Zha; Feng Bai; Xin Hai Pei; Shimin Zhao; Yue Xiong; Kun-Liang Guan

ABSTRACT TAZ is a WW domain containing a transcription coactivator that modulates mesenchymal differentiation and development of multiple organs. In this study, we show that TAZ is phosphorylated by the Lats tumor suppressor kinase, a key component of the Hippo pathway, whose alterations result in organ and tissue hypertrophy in Drosophila and contribute to tumorigenesis in humans. Lats phosphorylates TAZ on several serine residues in the conserved HXRXXS motif and creates 14-3-3 binding sites, leading to cytoplasmic retention and functional inactivation of TAZ. Ectopic expression of TAZ stimulates cell proliferation, reduces cell contact inhibition, and promotes epithelial-mesenchymal transition (EMT). Elimination of the Lats phosphorylation sites results in a constitutively active TAZ, enhancing the activity of TAZ in promoting cell proliferation and EMT. Our results elucidate a molecular mechanism for TAZ regulation and indicate a potential function of TAZ as an important target of the Hippo pathway in regulating cell proliferation tumorigenesis.


Genes & Development | 2011

Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein

Bin Zhao; Li Li; Qing Lu; Lloyd H. Wang; Chenying Liu; Qun Ying Lei; Kun-Liang Guan

The Yes-associated protein (YAP) is a transcription coactivator that plays a crucial role in organ size control by promoting cell proliferation and inhibiting apoptosis. The Hippo tumor suppressor pathway inhibits YAP through phosphorylation-induced cytoplasmic retention and degradation. Here we report a novel mechanism of YAP regulation by angiomotin (AMOT) family proteins via a direct interaction. Knockdown of AMOT family protein AMOTL2 in polarized Madin-Darby canine kidney (MDCK) cells leads to YAP activation, as indicated by decreased YAP tight junction localization, attenuated YAP phosphorylation, accumulation of nuclear YAP, and induction of YAP target gene expression. Transcriptional coactivator with PDZ-binding motif (TAZ), the YAP paralog, is also regulated by AMOT in a similar fashion. Furthermore, AMOTL2 knockdown results in loss of cell contact inhibition in a manner dependent on the functions of YAP and TAZ. Our results indicate a potential tumor-suppressing role of AMOT family proteins as components of the Hippo pathway, and demonstrate a novel mechanism of YAP and TAZ inhibition by AMOT-mediated tight junction localization. These observations provide a potential link between the Hippo pathway and cell contact inhibition.


Molecular Cell | 2011

Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

Lei Lv; Dong Li; Di Zhao; Ruiting Lin; Yajing Chu; Heng Zhang; Zhengyu Zha; Ying Liu; Zi Li; Yanping Xu; Gang Wang; Yiran Huang; Yue Xiong; Kun-Liang Guan; Qun Ying Lei

Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA.


Current Opinion in Cell Biology | 2008

The Hippo-YAP pathway: new connections between regulation of organ size and cancer

Bin Zhao; Qun Ying Lei; Kun-Liang Guan

The control of organ size is a basic biological question. In the past several years, the Hippo signaling pathway has been delineated and shown to be crucial in control of organ size in both Drosophila and mammals. Acting downstream of the Hippo pathway is the Yki/YAP/TAZ transcription co-activators. In mammalian cells, the Hippo pathway kinase cascade inhibits YAP and its paralog TAZ by phosphorylation and promotion of their cytoplasmic localization. The TEAD family transcription factors have recently been identified as evolutionarily conserved key mediators of YAP biological functions. yap is a candidate oncogene, and several other components of the Hippo pathway are tumor suppressors. Dysregulation of the Hippo pathway contributes to the loss of contact inhibition observed in cancer cells. Therefore, the Hippo-YAP pathway connects the regulation of organ size and tumorigenesis.


Journal of Biological Chemistry | 2009

TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition

Heng Zhang; Chen Ying Liu; Zheng Yu Zha; Bin Zhao; Jun Yao; Shimin Zhao; Yue Xiong; Qun Ying Lei; Kun-Liang Guan

The TAZ transcription co-activator has been shown to promote cell proliferation and to induce epithelial-mesenchymal transition. Recently we have demonstrated that TAZ is phosphorylated and inhibited by the Hippo tumor suppressor pathway, which is altered in human cancer. The mechanism of TAZ-mediated transcription is unclear. We demonstrate here that TEAD is a key downstream transcription factor mediating the function of TAZ. Disruption of TEAD-TAZ binding or silencing of TEAD expression blocked the function of TAZ to promote cell proliferation and to induce epithelial-mesenchymal transition, demonstrating TEAD as a key downstream effector of TAZ. We also identified CTGF, a gene that regulates cell adhesion, proliferation, and migration, as a direct target of TAZ and TEAD. Our study establishes a functional partnership between TAZ and TEAD under negative regulation by the Hippo signaling pathway.


EMBO Reports | 2011

Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS

Yaohui Chen; Jinye Zhang; Yan Lin; Qun Ying Lei; Kun-Liang Guan; Shimin Zhao; Yue Xiong

Mitochondria manganese superoxide dismutase (SOD2) is an important antioxidant enzyme, deficiency of which is associated with various human diseases. The known primary regulation of SOD2 is through transcriptional activation. Here, we report that SOD2 is acetylated at Lys 68 and that this acetylation decreases SOD2 activity. Mitochondrial deacetylase SIRT3 binds to, deacetylates and activates SOD2. Increase of reactive oxygen species (ROS) levels stimulates SIRT3 transcription, leading to SOD2 deacetylation and activation. SOD2‐mediated ROS reduction is synergistically increased by SIRT3 co‐expression, but is cancelled by SIRT3 depletion. These results reveal a new post‐translational regulation of SOD2 by means of acetylation and SIRT3‐dependent deacetylation in response to oxidative stress.

Collaboration


Dive into the Qun Ying Lei's collaboration.

Top Co-Authors

Avatar

Kun-Liang Guan

University of California

View shared research outputs
Top Co-Authors

Avatar

Yue Xiong

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhao

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge