Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qunfeng Cai is active.

Publication


Featured researches published by Qunfeng Cai.


Neuroscience | 2009

Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats

Bo Hua Hu; Qunfeng Cai; Senthilvelan Manohar; Haiyan Jiang; Dalian Ding; Donald Coling; Guiliang Zheng; Richard Salvi

Exposure to intense noise induces apoptosis in hair cells in the cochlea. To identify the molecular changes associated with noise-induced apoptosis, we used quantitative real-time PCR to evaluate the changes in 84 apoptosis-related genes in cochlear samples from the sensory epithelium and lateral wall. Sprague-Dawley rats exposed to a continuous noise at 115 dB SPL for 2 h. The exposure caused a 40-60 dB threshold shift 4 h post-exposure that decreased to 20-30 dB 7 days post-exposure. These functional changes were associated with apoptotic markers including nuclear condensation and fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Immediately after the noise exposure, 12 genes were downregulated, whereas only one gene (Traf4) was upregulated. At 4 h post-exposure, eight genes were upregulated; three (Tnrsf1a, Tnfrsf1b, Tnfrst5) belonged to the Tnfrsf family, three (Bir3, Mcl1 and Prok2) have anti-apoptotic properties and one (Gadd45a) is a target of p53. At 7 days post-exposure, all the upregulated genes returned to pre-noise levels. Interestingly, the normal control cochlea had high constitutive levels of several apoptosis-related genes. These constitutively expressed genes, together with the inducible genes, may participate in the induction of cochlear apoptotic activity.


The Journal of Neuroscience | 2012

Metalloproteinases and Their Associated Genes Contribute to the Functional Integrity and Noise-Induced Damage in the Cochlear Sensory Epithelium

Bo Hua Hu; Qunfeng Cai; Zihua Hu; Minal Patel; Jonathan Bard; Jennifer Jamison; Donald Coling

Matrix metalloproteinases (MMPs) and their related gene products regulate essential cellular functions. An imbalance in MMPs has been implicated in various neurological disorders, including traumatic injuries. Here, we report a role for MMPs and their related gene products in the modulation of cochlear responses to acoustic trauma in rats. The normal cochlea was shown to be enriched in MMP enzymatic activity, and this activity was reduced in a time-dependent manner after traumatic noise injury. The analysis of gene expression by RNA sequencing and qRT-PCR revealed the differential expression of MMPs and their related genes between functionally specialized regions of the sensory epithelium. The expression of these genes was dynamically regulated between the acute and chronic phases of noise-induced hearing loss. Moreover, noise-induced expression changes in two endogenous MMP inhibitors, Timp1 and Timp2, in sensory cells were dependent on the stage of nuclear condensation, suggesting a specific role for MMP activity in sensory cell apoptosis. A short-term application of doxycycline, a broad-spectrum inhibitor of MMPs, before noise exposure reduced noise-induced hearing loss and sensory cell death. In contrast, a 7 d treatment compromised hearing sensitivity and potentiated noise-induced hearing loss. This detrimental effect of the long-term inhibition of MMPs on noise-induced hearing loss was further confirmed using targeted Mmp7 knock-out mice. Together, these observations suggest that MMPs and their related genes participate in the regulation of cochlear responses to acoustic overstimulation and that the modulation of MMP activity can serve as a novel therapeutic target for the reduction of noise-induced cochlear damage.


PLOS ONE | 2013

The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma.

Minal Patel; Qunfeng Cai; Dalian Ding; Richard Salvi; Zihua Hu; Bo Hua Hu

Acoustic trauma, one of the leading causes of sensorineural hearing loss, induces sensory hair cell damage in the cochlea. Identifying the molecular mechanisms involved in regulating sensory hair cell death is critical towards developing effective treatments for preventing hair cell damage. Recently, microRNAs (miRNAs) have been shown to participate in the regulatory mechanisms of inner ear development and homeostasis. However, their involvement in cochlear sensory cell degeneration following acoustic trauma is unknown. Here, we profiled the expression pattern of miRNAs in the cochlear sensory epithelium, defined miRNA responses to acoustic overstimulation, and explored potential mRNA targets of miRNAs that may be responsible for the stress responses of the cochlea. Expression analysis of miRNAs in the cochlear sensory epithelium revealed constitutive expression of 176 miRNAs, many of which have not been previously reported in cochlear tissue. Exposure to intense noise caused significant threshold shift and apoptotic activity in the cochleae. Gene expression analysis of noise-traumatized cochleae revealed time-dependent transcriptional changes in the expression of miRNAs. Target prediction analysis revealed potential target genes of the significantly downregulated miRNAs, many of which had cell death- and apoptosis-related functions. Verification of the predicted targets revealed a significant upregulation of Taok1, a target of miRNA-183. Moreover, inhibition of miR-183 with morpholino antisense oligos in cochlear organotypic cultures revealed a negative correlation between the expression levels of miR-183 and Taok1, suggesting the presence of a miR-183/Taok1 target pair. Together, miRNA profiling as well as the target analysis and validation suggest the involvement of miRNAs in the regulation of the degenerative process of the cochlea following acoustic overstimulation. The miR-183/Taok1 target pair is likely to play a role in this regulatory process.


Neuroscience | 2015

Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation.

Weiping Yang; R. Robert Vethanayagam; Youyi Dong; Qunfeng Cai; Bo Hua Hu

The immune response is an important component of the cochlear response to stress. As an important player in the cochlear immune system, the basilar membrane immune cells reside on the surface of the scala tympani side of the basilar membrane. At present, the immune cell properties in this region and their responses to stress are not well understood. Here, we investigated the functional role of these immune cells in the immune response to acoustic overstimulation. This study reveals that tissue macrophages are present in the entire length of the basilar membrane under steady-state conditions. Notably, these cells in the apical and the basal sections of the basilar membrane display distinct morphologies and immune protein expression patterns. Following acoustic trauma, monocytes infiltrate into the region of the basilar membrane, and the infiltrated cells transform into macrophages. While monocyte infiltration and transformation occur in both the apical and the basal sections of the basilar membrane, only the basal monocytes and macrophages display a marked increase in the expression of major histocompatibility complex (MHC) II and class II transactivator (CIITA), a MHC II production cofactor, suggesting the site-dependent activation of antigen-presenting function. Consistent with the increased expression of the antigen-presenting proteins, CD4(+) T cells, the antigen-presenting partner, infiltrate into the region of the basilar membrane where antigen-presenting proteins are upregulated. Further pathological analyses revealed that the basal section of the cochlea displays a greater level of sensory cell damage, which is spatially correlated with the region of antigen-presenting activity. Together, these results suggest that the antigen-presenting function of the mononuclear phagocyte population is activated in response to acoustic trauma, which could bridge the innate immune response to adaptive immunity.


Neurobiology of Disease | 2012

Transcriptional changes in adhesion-related genes are site-specific during noise-induced cochlear pathogenesis

Qunfeng Cai; Minal Patel; Donald Coling; Bo Hua Hu

Cell-cell junctions and junctions between cells and extracellular matrix are essential for maintenance of the structural and functional integrity of the cochlea, and are also a major target of acoustic trauma. While morphological assessments have revealed adhesion dysfunction in noise-traumatized cochleae, the molecular mechanisms responsible for adhesion disruption are not clear. Here, we screened the transcriptional expression of 49 adhesion-related genes in normal rat cochleae and measured the expression changes in the early phases of cochlear pathogenesis after acoustic trauma. We found that genes from four adhesion families, including the immunoglobulin superfamily and the integrin, cadherin, and selectin families, are expressed in the normal cochlea. Exposure to an intense noise at 120dB sound pressure level (SPL) for 2h caused site-specific changes in expression levels in the apical and the basal sections of the sensory epithelium. Expression changes that occurred in the cochlear sensory epithelium were biphasic, with early upregulation at 2h post-noise exposure and subsequent downregulation at 1day post-exposure. Importantly, the altered expression level of seven genes (Sgce, Sell, Itga5, Itgal, Selp, Cntn1 and Col5a1) is related to the level of threshold shift of the auditory brainstem response (ABR), an index reflecting functional change in the cochlea. Notably, the genes showing expression changes exhibited diverse constitutive expression levels and belong to multiple adhesion gene families. The finding of expression changes in multiple families of adhesion genes in a temporal fashion (2h vs. 1day) and a spatial fashion (the apical and the basal sensory epithelia as well as the lateral wall tissue) suggests that acoustic overstimulation provokes a complex response in adhesion genes, which likely involves multiple adhesion-related signaling pathways.


Journal of Neuroinflammation | 2014

Molecular profile of cochlear immunity in the resident cells of the organ of Corti

Qunfeng Cai; R. Robert Vethanayagam; Shuzhi Yang; Jonathan Bard; Jennifer Jamison; Daniel Cartwright; Youyi Dong; Bo Hua Hu

BackgroundThe cochlea is the sensory organ of hearing. In the cochlea, the organ of Corti houses sensory cells that are susceptible to pathological insults. While the organ of Corti lacks immune cells, it does have the capacity for immune activity. We hypothesized that resident cells in the organ of Corti were responsible for the stress-induced immune response of the organ of Corti. This study profiled the molecular composition of the immune system in the organ of Corti and examined the immune response of non-immune epithelial cells to acoustic overstimulation.MethodsUsing high-throughput RNA-sequencing and qRT-PCR arrays, we identified immune- and inflammation-related genes in both the cochlear sensory epithelium and the organ of Corti. Using bioinformatics analyses, we cataloged the immune genes expressed. We then examined the response of these genes to acoustic overstimulation and determined how changes in immune gene expression were related to sensory cell damage.ResultsThe RNA-sequencing analysis reveals robust expression of immune-related genes in the cochlear sensory epithelium. The qRT-PCR array analysis confirms that many of these genes are constitutively expressed in the resident cells of the organ of Corti. Bioinformatics analyses reveal that the genes expressed are linked to the Toll-like receptor signaling pathway. We demonstrate that expression of Toll-like receptor signaling genes is predominantly from the supporting cells in the organ of Corti cells. Importantly, our data demonstrate that these Toll-like receptor pathway genes are able to respond to acoustic trauma and that their expression changes are associated with sensory cell damage.ConclusionThe cochlear resident cells in the organ of Corti have immune capacity and participate in the cochlear immune response to acoustic overstimulation.


Neuroscience | 2013

Transcriptome characterization by RNA-Seq reveals the involvement of the complement components in noise-traumatized rat cochleae.

Minal Patel; Zihua Hu; Jonathan Bard; Jennifer Jamison; Qunfeng Cai; Bo Hua Hu

Acoustic trauma, a leading cause of sensorineural hearing loss in adults, induces a complex degenerative process in the cochlea. Although previous investigations have identified multiple stress pathways, a comprehensive analysis of cochlear responses to acoustic injury is still lacking. In the current study, we used the next-generation RNA-sequencing (RNA-Seq) technique to sequence the whole transcriptome of the normal and noise-traumatized cochlear sensory epithelia (CSE). CSE tissues were collected from rat inner ears 1d after the rats were exposed to a 120-dB (sound pressure level) noise for 2 h. The RNA-Seq generated over 176 million sequence reads for the normal CSE and over 164 million reads for the noise-traumatized CSE. Alignment of these sequences with the rat Rn4 genome revealed the expression of over 17,000 gene transcripts in the CSE, over 2000 of which were exclusively expressed in either the normal or noise-traumatized CSE. Seventy-eight gene transcripts were differentially expressed (70 upregulated and 8 downregulated) after acoustic trauma. Many of the differentially expressed genes are related to the innate immune system. Further expression analyses using quantitative real time PCR confirmed the constitutive expression of multiple complement genes in the normal organ of Corti and the changes in the expression levels of the complement factor I (Cfi) and complement component 1, s subcomponent (C1s) after acoustic trauma. Moreover, protein expression analysis revealed strong expression of Cfi and C1s proteins in the organ of Corti. Importantly, these proteins exhibited expression changes following acoustic trauma. Collectively, the results of the current investigation suggest the involvement of the complement components in cochlear responses to acoustic trauma.


Hearing Research | 2016

Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma.

Shuzhi Yang; Qunfeng Cai; R. Robert Vethanayagam; Jianmin Wang; Weiping Yang; Bo Hua Hu

Our previous RNA-sequencing analysis of the rat cochlear genes identified multiple biological processes and molecular pathways in the cochlear response to acoustic overstimulation. However, the biological processes and molecular pathways that are common to other species have not been documented. The identification of these common stress processes is pivotal for a better understanding of the essential response of the cochlea to acoustic injury. Here, we compared the RNA-sequencing data collected from mice and rats that sustained a similar, but not identical, acoustic injury. The transcriptome analysis of cochlear genes identified the differentially expressed genes in the mouse and rat samples. Bioinformatics analysis revealed a marked similarity in the changes in the biological processes between the two species, although the differentially expressed genes did not overlap well. The common processes associated with the differentially expressed genes are primarily associated with immunity and inflammation, which include the immune response, response to wounding, the defense response, chemotaxis and inflammatory responses. Moreover, analysis of the molecular pathways showed considerable overlap between the two species. The common pathways include cytokine-cytokine receptor interactions, the chemokine signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. Further analysis of the transcriptional regulators revealed common upstream regulators of the differentially expressed genes, and these upstream regulators are also functionally related to the immune and inflammatory responses. These results suggest that the immune and inflammatory responses are the essential responses to acoustic overstimulation in the cochlea.


Journal of Neuroscience Research | 2010

Acoustic overstimulation modifies Mcl-1 expression in cochlear sensory epithelial cells.

Bo Hua Hu; Qunfeng Cai

Acoustic overstimulation causes apoptotic cell death in the cochlea. This death process is mediated, in part, by the mitochondrial signaling pathway involving Bcl‐2 family proteins. Myeloid cell leukemia sequence 1 (Mcl‐l) is an antiapoptotic member of the Bcl‐2 family. Its involvement in noise‐induced hair cell death has not been characterized. Here we report the endogenous expression and the noise‐induced expression of Mcl‐1 in Sprague Dawley rat cochleae. In the sensory epithelia of normal cochleae, there is strong constitutive expression of Mcl‐1 mRNA, with an expression level higher than that of many other Bcl‐2 family genes. The Mcl‐1 protein is preferentially expressed in outer hair cells. After exposure to a high level of continuous noise at 115‐dB sound pressure level for 1 hr, Mcl‐1 expression displays a time‐dependent alteration, with up‐regulation of Mcl‐1 mRNA at 4 hr postexposure and protein up‐regulation at 1 day postexposure. Western blot analysis reveals the up‐regulated Mcl‐1 as the full‐length form of Mcl‐1. Immunolabeling of the Mcl‐1 protein reveals the early increase in Mcl‐1 immunoreactivity in the nuclear region of the hair cells displaying apoptotic phenotypes and a subsequent increase in survival hair cells. These results suggest that Mcl‐1 is involved in the regulation of hair cell pathogenesis resulting from acoustic stress, possibly by influencing the nuclear events of apoptosis.


Journal of Neuroscience Methods | 2013

RNAlater facilitates microdissection of sensory cell-enriched samples from the mouse cochlea for transcriptional analyses

Qunfeng Cai; Bo Wang; Minal Patel; Shi Ming Yang; Bo Hua Hu

Molecular analyses of cochlear pathology rely on the acquisition of high-quality cochlear samples. For small rodents, isolating sensory cell-enriched samples with well-preserved RNA integrity for transcriptional analyses poses a significant challenge. Here, we report a microdissection technique for isolating sensory cell-enriched samples from the cochlea. We found that treating the tissue with RNAlater, a RNA preservation medium, alters the physical properties of the tissue and facilitates the dissection. Unlike previous samples that have been isolated from the sensory epithelium, our samples contain defined cell populations that have a consistent ratio of sensory cells to supporting cells. Importantly, the RNA components were well preserved. With this microdissection method, we collected three types of samples: sensory cell-enriched, outer hair cell-enriched, and inner hair cell-enriched. To demonstrate the feasibility of the method, we screened multiple reference genes in the sensory cell-enriched samples and identified stable genes in noise-traumatized cochleae. The method described here balances the need for both quality and purity of sensory cells and also circumvents many limitations of the currently available techniques for collecting cochlear tissues. With our approach, the collected samples can be used in diverse downstream analyses, including qRT-PCR, microarray, and RNA sequencing.

Collaboration


Dive into the Qunfeng Cai's collaboration.

Top Co-Authors

Avatar

Bo Hua Hu

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zihua Hu

University at Buffalo

View shared research outputs
Researchain Logo
Decentralizing Knowledge