Qunfeng Cheng
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qunfeng Cheng.
ACS Nano | 2014
Wei Cui; Jiyang Liu; Ben Wang; Chuck Zhang; Lei Jiang; Qunfeng Cheng
Demands of the strong integrated materials have substantially increased across various industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, we have developed a strategy for fabricating the strong integrated artificial nacre based on graphene oxide (GO) sheets by dopamine cross-linking via evaporation-induced assembly process. The tensile strength and toughness simultaneously show 1.5 and 2 times higher than that of natural nacre. Meanwhile, the artificial nacre shows high electrical conductivity. This type of strong integrated artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.
Small | 2010
Qunfeng Cheng; Ben Wang; Chuck Zhang; Zhiyong Liang
Since their discovery in 1991, carbon nanotubes (CNTs) have been considered as the next-generation reinforcement materials to potentially replace conventional carbon fibers for producing super-high-performance lightweight composites. Herein, it is reported that sheets of millimeter-long multi-walled CNTs with stretch alignment and epoxidation functionalization reinforce bismaleimide resin, which results in composites with an unprecedentedly high tensile strength of 3081 MPa and modulus of 350 GPa, well exceeding those of state-of-the-art unidirectional carbon-fiber-reinforced composites. The results also provide important experimental evidence of the impact of functionalization and the effect of alignment reported previously on the mechanical performance and electrical conductivity of the nanocomposites.
Nanotechnology | 2009
Jin Gyu Park; Jeffrey Louis; Qunfeng Cheng; Jianwen Bao; Jesse Smithyman; Richard Liang; Ben Wang; Chuck Zhang; J. S. Brooks; Leslie Kramer; Percy Fanchasis; David Dorough
Preformed carbon nanotube thin films (10-20 microm), or buckypapers (BPs), consist of dense and entangled nanotube networks, which demonstrate high electrical conductivity and provide potential lightweight electromagnetic interference (EMI) solutions for composite structures. Nanocomposite laminates consisting of various proportions of single-walled and multi-walled carbon nanotubes, having different conductivity, and with different stacking structures, were studied. Single-layer BP composites showed shielding effectiveness (SE) of 20-60 dB, depending on the BP conductivity within a 2-18 GHz frequency range. The effects on EMI SE performance of composite laminate structures made with BPs of different conductivity values and epoxy or polyethylene insulating layer stacking sequences were studied. The results were also compared against the predictions from a modified EMI SE model. The predicted trends of SE value and frequency dependence were consistent with the experimental results, revealing that adjusting the number of BP layers and appropriate arrangement of the BP conducting layers and insulators can increase the EMI SE from 45 dB to close to 100 dB owing to the utilization of the double-shielding effect.
ACS Nano | 2015
Shanshan Gong; Wei Cui; Qi Zhang; Anyuan Cao; Lei Jiang; Qunfeng Cheng
With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a gold standard for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile strength and toughness of this kind of ternary bioinspired nanocomposites reaches 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m(3), which is 2.6 and 3.3 times that of pure reduced graphene oxide film, respectively. Furthermore, this ternary bioinspired nanocomposite has a high conductivity of 394.0 ± 6.8 S/cm and also shows excellent fatigue-resistant properties, which may enable this material to be used in aerospace, flexible energy devices, and artificial muscle. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a strategy for the construction of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.
Nanotechnology | 2009
Ying Tian; Jin Gyu Park; Qunfeng Cheng; Zhiyong Liang; Chuck Zhang; Ben Wang
Single-walled carbon nanotube (SWNT)/polymer composites are widely studied because of their potential for high mechanical performance and multifunctional applications. In order to realize highly ordered multilayer nanostructures, we combined the layer-by-layer (LBL) assembly method with magnetic force-induced alignment to fabricate SWNT/poly(ethylamine) (PEI) multilayer composites. The SWNTs were functionalized with the anionic surfactant sodium dodecylbenzenesulfonate (NaDDBS) to realize negative charge at pH>7, while the PEI is positively charged at pH<7. The LBL method is based on the electrostatic absorption between the charged SWNTs and PEI resin to form multilayer composites on a solid substrate polydimethylsiloxane. Since the fabricated thickness of each SWNT-NaDDBS/PEI bilayer is uniform ( approximately 150 nm), the multilayer film thickness can be strictly controlled via the number of deposition cycles. A high magnetic field (8.5 Tesla) was used to align the SWNTs during the LBL process. The resultant LBL composite samples demonstrated high SWNT loading of approximately 50 wt% and uniform distribution of SWNTs in the multilayer structures, which was verified using a quartz crystal microbalance. Good alignment was also realized and observed through using high magnetic fields to align the nanotubes during the LBL deposition process. The results indicate that the LBL/magnetic alignment approach has potential for fabricating nanotube composites with highly ordered nanostructures for multifunctional materials and device applications.
Journal of Nanomaterials | 2012
Michael Zimmer; Qunfeng Cheng; Shu Li; J. S. Brooks; Richard Liang; Ben Wang; Chuck Zhang
There are documented advantages to using carbon nanotubes (CNTs) in composites for various property enhancements. However, to date, only limited studies have been conducted on using of longer CNTs over 1mm in length. This study used long multiwalled carbon nanotubes (LMWCNTs) and their longer extended networks to test multiple properties in thermal conductivity, electrical conductivity, mechanical strength, and modulus and then compared these properties to those of shorter multi-walled carbon nanotubes (SMWCNTs). For carbon fiber-reinforced composites, the longer graphite paths from LMWCNTs in the matrix were expected to improve all properties. The longer networks were expected to allow for more undisturbed phonon transportation to improve thermal conductivity. This in turn relates to improved electrical conductivity and better mechanical properties. However, results have shown that the LMWCNTs do not improve or decrease thermal conductivity, whereas the shorter MWCNTs provide mixed results. LMWCNTs did show improvements in electrical, mechanical, and physical properties, but compared to shorter MWCNTs, the results in other certain properties varied. This perplexing outcome resides in the functioning of the networks made by both the LMWCNTs and shorter MWCNTs.
Advanced Functional Materials | 2009
Qunfeng Cheng; Jianwen Bao; JinGyu Park; Zhiyong Liang; Chuck Zhang; Ben Wang
Carbon | 2012
Jin Gyu Park; Qunfeng Cheng; Jun Lu; Jianwen Bao; Shu Li; Ying Tian; Zhiyong Liang; Chuck Zhang; Ben Wang
Carbon | 2012
Shu Li; Jin Gyu Park; Zhiyong Liang; T. Siegrist; Tao Liu; Mei Zhang; Qunfeng Cheng; Ben Wang; Chuck Zhang
Archive | 2010
Jianwen Bao; Zhiyong Liang; Ben Wang; Chun Zhang; Qunfeng Cheng