Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qunfeng Lou is active.

Publication


Featured researches published by Qunfeng Lou.


Plant and Cell Physiology | 2014

Transcriptome Comparison of Global Distinctive Features Between Pollination and Parthenocarpic Fruit Set Reveals Transcriptional Phytohormone Cross-Talk in Cucumber (Cucumis sativus L.)

Ji Li; Zhe Wu; Li Cui; Tinglin Zhang; Qinwei Guo; Jian Xu; Li Jia; Qunfeng Lou; Sanwen Huang; Zhengguo Li; Jinfeng Chen

Parthenocarpy is an important trait determining yield and quality of fruit crops. However, the understanding of the mechanisms underlying parthenocarpy induction is limited. Cucumber (Cucumis sativus L.) is abundant in parthenocarpic germplasm resources and is an excellent model organism for parthenocarpy studies. In this study, the transcriptome of cucumber fruits was studied using RNA sequencing (RNA-Seq). Differentially expressed genes (DEGs) of set fruits were compared against aborted fruits. Distinctive features of parthenocarpic and pollinated fruits were revealed by combining the analysis of the transcriptome together with cytomorphological and physiological analysis. Cell division and the transcription of cell division genes were found to be more active in parthenocarpic fruit. The study also indicated that parthenocarpic fruit set is a high sugar-consuming process which is achieved via enhanced carbohydrate degradation through transcription of genes that lead to the breakdown of carbohydrates. Furthermore, the evidence provided by this work supports a hypothesis that parthenocarpic fruit set is induced by mimicking the processes of pollination/fertilization at the transcriptional level, i.e. by performing the same transcriptional patterns of genes inducing pollination and gametophyte development as in pollinated fruit. Based on the RNA-Seq and ovary transient expression results, 14 genes were predicted as putative parthenocarpic genes. The transcription analysis of these candidate genes revealed auxin, cytokinin and gibberellin cross-talk at the transcriptional level during parthenocarpic fruit set.


Plant Journal | 2014

Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis

Qunfeng Lou; Yunxia Zhang; Yuhua He; Ji Li; Li Jia; Chunyan Cheng; Wei Guan; Shuqiong Yang; Jinfeng Chen

Chromosome painting based on fluorescence in situ hybridization (FISH) has played an important role in chromosome identification and research into chromosome rearrangements, diagnosis of chromosome abnormalities and evolution in human and animal species. However, it has not been applied widely in plants due to the large amounts of dispersed repetitive sequences in chromosomes. In the present work, a chromosome painting method for single-copy gene pools in Cucumis sativus was successfully developed. Gene probes with sizes above 2 kb were detected consistently. A cucumber karyotype was constructed based on FISH using a cocktail containing chromosome-specific gene probes. This single-copy gene-based chromosome painting (ScgCP) technique was performed by PCR amplification, purification, pooling, labeling and hybridization onto chromosome spreads. Gene pools containing sequential genes with an interval less than 300 kb yielded painting patterns on pachytene chromosomes. Seven gene pools corresponding to individual chromosomes unambiguously painted each chromosome pair of C. sativus. Three mis-aligned regions on chromosome 4 were identified by the painting patterns. A probe pool comprising 133 genes covering the 8 Mb distal end of chromosome 4 was used to evaluate the potential utility of the ScgCP technique for chromosome rearrangement research through cross-species FISH in the Cucumis genus. Distinct painting patterns of this region were observed in C. sativus, C. melo and C. metuliferus species. A comparative chromosome map of this region was constructed between cucumber and melon. With increasing sequence resources, this ScgCP technique may be applied on any other sequenced species for chromosome painting research.


PLOS ONE | 2013

Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.

Qunfeng Lou; Yuhua He; Chunyan Cheng; Zhonghua Zhang; Ji Li; Sanwen Huang; Jinfeng Chen

Cucumber is an important model crop and the first species sequenced in Cucurbitaceae family. Compared to the fast increasing genetic and genomics resources, the molecular cytogenetic researches in cucumber are still very limited, which results in directly the shortage of relation between plenty of physical sequences or genetic data and chromosome structure. We mapped twenty-three fosmids anchored by SSR markers from LG-3, the longest linkage group, and LG-4, the shortest linkage group on pachytene chromosomes 3 and 4, using uorescence in situ hybridization (FISH). Integrated molecular cytogenetic maps of chromosomes 3 and 4 were constructed. Except for three SSR markers located on heterochromatin region, the cytological order of markers was concordant with those on the linkage maps. Distinct structural differences between chromosomes 3 and 4 were revealed by the high resolution pachytene chromosomes. The extreme difference of genetic length between LG-3 and LG-4 was mainly attributed to the difference of overall recombination frequency. The significant differentiation of heterochromatin contents in chromosomes 3 and 4 might have a direct correlation with recombination frequency. Meanwhile, the uneven distribution of recombination frequency along chromosome 4 was observed, and recombination frequency of the long arm was nearly 3.5 times higher than that of the short arm. The severe suppression of recombination was exhibited in centromeric and heterochromatin domains of chromosome 4. Whereas a close correlation between the gene density and recombination frequency was observed in chromosome 4, no significant correlation was observed between them along chromosome 3. The comparison between cytogenetic and sequence maps revealed a large gap on the pericentromeric heterochromatin region of sequence map of chromosome 4. These results showed that integrated molecular cytogenetic maps can provide important information for the study of genetic and genomics in cucumber.


BMC Genomics | 2015

Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping

Yunxia Zhang; Chunyan Cheng; Ji Li; Shuqiong Yang; Yunzhu Wang; Ziang Li; Jinfeng Chen; Qunfeng Lou

BackgroundDifferentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats.ResultsChromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in Cucumis species. Besides, the significant correlation was found between gene density along chromosome and GISH band intensity in C. sativus and C. melo.ConclusionsIn summary, comparative cytogenetic mapping of major satellites and GISH revealed the distinct differentiation of chromosome structure during species formation. The evolution of repetitive sequences was the main force for the divergence of Cucumis species from common ancestor.


Scientific Reports | 2016

Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis

Qingzhen Wei; Wenyuan Fu; Yunzhu Wang; Xiaodong Qin; Jing Wang; Ji Li; Qunfeng Lou; Jinfeng Chen

The cucumber (Cucumis sativus L.) exhibits extensive variations in fruit size and shape. Fruit length is an important agronomic and domesticated trait controlled by quantitative trait loci (QTLs). Nonetheless, the underlying molecular and genetic mechanisms that determine cucumber fruit length remain unclear. QTL-seq is an efficient strategy for QTL identification that takes advantage of bulked-segregant analysis (BSA) and next-generation sequencing (NGS). In the present study, we conducted QTL mapping and QTL-seq of cucumber fruit length. QTL mapping identified 8 QTLs for immature and mature fruit length. A major-effect QTL fl3.2, which explained a maximum of 38.87% of the phenotypic variation, was detected. A genome-wide comparison of SNP profiles between two DNA bulks identified 6 QTLs for ovary length. QTLs ovl3.1 and ovl3.2 both had major effects on ovary length with a △ (SNP-index) of 0.80 (P < 0.01) and 0.74 (P < 0.01), respectively. Quantitative RT-PCR of fruit size-related homologous genes localized in the consensus QTL FL3.2 was conducted. Four candidate genes exhibited increased expression levels in long fruit genotypes. Our results demonstrated the power of the QTL-seq method in rapid QTL detection and provided reliable QTL regions for fine mapping of fruit length-related loci and for identifying candidate genes.


Genome | 2016

Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis

Zhentao Zhang; Shuqiong Yang; Ziang Li; Yunxia Zhang; Yunzhu Wang; Chunyan Cheng; Ji Li; Jinfeng Chen; Qunfeng Lou

Ribosomal DNAs are useful cytogenetic markers for chromosome analysis. Studies investigating site numbers and distributions of rDNAs have provided important information for elucidating genome organization and chromosomal relationships of many species by fluorescence in situ hybridization. But relevant studies are scarce for species of the genus Cucumis, especially in wild species. In the present study, FISH was conducted to investigate the organization of 45S and 5S rDNA among 20 Cucumis accessions, including cultivars and wild accessions. Our results showed that the number of 45S rDNA sites varied from one to five pairs in different accessions, and most of these sites are located at the terminal regions of chromosomes. Interestingly, up to five pairs of 45S rDNA sites were observed in C. sativus var. sativus, the species which has the lowest chromosome number, i.e., 2n = 14. Only one pair of 5S rDNA sites was detected in all accessions, except for C. heptadactylus, C. sp, and C. spp that had two pairs of 5S rDNA sites. The distributions of 5S rDNA sites showed more variation than 45S rDNA sites. The phylogenetic analysis in this study showed that 45S and 5S rDNA have contrasting evolutionary patterns. We find that 5S rDNA has a polyploidization-related tendency towards the terminal location from an interstitial location but maintains a conserved site number, whereas the 45S rDNA showed a trend of increasing site number but a relatively conserved location.


BMC Plant Biology | 2017

New insights into the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis

Jian Xu; Ji Li; Li Cui; Ting Zhang; Zhe Wu; Pin-yu Zhu; Yong-Jiao Meng; Kaijing Zhang; Xia-Qing Yu; Qunfeng Lou; Jinfeng Chen

BackgroundTIR1-like proteins act as auxin receptors and play essential roles in auxin-mediated plant development processes. The number of auxin receptor family members varies among species. While the functions of auxin receptor genes have been widely studied in Arabidopsis, the distinct functions of cucumber (Cucumis sativus L.) auxin receptors remains poorly understood. To further our understanding of their potential role in cucumber development, two TIR1-like genes were identified and designated CsTIR1 and CsAFB2. In the present study, tomato (Sonanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of CsTIR1 and CsAFB2.ResultsDifferences in the subcellular localizations of CsTIR1 and CsAFB2 were identified and both genes were actively expressed in leaf, female flower and young fruit tissues of cucumber. Moreover, CsTIR1- and CsAFB2-overexpressing lines exhibited pleotropic phenotypes ranging from leaf abnormalities to seed germination and parthenocarpic fruit compared with the wild-type plants. To further elucidate the regulation of CsTIR1 and CsAFB2, the role of the miR393/TIR1 module in regulating cucumber fruit set were investigated. Activation of miR393-mediated mRNA cleavage of CsTIR1 and CsAFB2 was revealed by qPCR and semi-qPCR, which highlighted the critical role of the miR393/TIR1 module in mediating fruit set development in cucumber.ConclusionOur results provide new insights into the involvement of CsTIR1 and CsAFB2 in regulating various phenotype alterations, and suggest that post-transcriptional regulation of CsTIR1 and CsAFB2 mediated by miR393 is essential for cucumber fruit set initiation. Collectively, these results further clarify the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis.


Chromosoma | 2017

Identification of all homoeologous chromosomes of newly synthetic allotetraploid Cucumis × hytivus and its wild parent reveals stable subgenome structure

Yunzhu Wang; Qinzheng Zhao; Xiaodong Qin; Shuqiong Yang; Ziang Li; Ji Li; Qunfeng Lou; Jinfeng Chen

Allopolyploidy and homoeologous recombination are two important processes in reshaping genomes and generating evolutionary novelties. Newly formed allopolyploids usually display chromosomal perturbations as a result of pairing errors at meiosis. To understand mechanisms of stabilization of allopolyploid species derived from distant chromosome bases, we investigated mitotic stability of a synthetic Cucumis allotetraploid species in relation to meiosis chromosome behavior. The Cucumis × hytivus is an allotetraploid synthesized from interspecific hybridization between cucumber (Cucumis sativus, 2n = 14) and its wild relative Cucumis hystrix (2n = 24) followed by spontaneous chromosome doubling. In the present study, we analyzed the wild parent C. hystrix and the latest generation of C. hytivus using GISH (genomic in situ hybridization) and cross-species FISH (fluorescence in situ hybridization). The karyotype of C. hystrix was constructed with two methods using cucumber fosmid clones and repetitive sequences. Using repeat-element probe mix in two successive hybridizations allowed for routine identification of all 19 homoeologous chromosomes of allotetraploid C. hytivus. No aneuploids were identified in any C. hytivus individuals that were characterized, and no large-scale chromosomal rearrangements were identified in this synthetic allotetraploid. Meiotic irregularities, such as homoeologous pairing, were frequently observed, resulting in univalent and intergenomic multivalent formation. The relatively stable chromosome structure of the synthetic Cucumis allotetraploid may be explained by more deleterious chromosomal viable gametes compared with other allopolyploids. The knowledge of genetic and genomic information of Cucumis allotetraploid species could provide novel insights into the establishment of allopolyploids with different chromosome bases.


Acta Physiologiae Plantarum | 2014

Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.)

Li Cui; Tinglin Zhang; Ji Li; Qunfeng Lou; Jinfeng Chen

Abstract Phytohormone auxin plays an important role in fruit development and is perceived by the TIR1/AFB family of F-box proteins as auxin receptors involved in auxin signal pathway. Cucumber (Cucumis sativus L.) fruit development is either parthenocarpic or non-parthenocarpic. However, little is known on TIR1 and AFB participation in the early stage of cucumber fruit development. In present study, TIR1 and AFB2 were isolated from cucumber. CsTIR1 and CsAFB2 were highly expressed in leaves and ovaries. Their transcript levels decreased in parthenocarpic and pollinated fruits, but continuously up-regulated in aborted fruits, indicating that down-regulation of CsTIR1 and CsAFB2 may be in favor of cucumber fruit set and development. The transcript levels of CsTIR1 and CsAFB2 were significantly induced in leaves by NAA, 6-BA, GA3, ABA, and ethephon. The expression levels were up-regulated by ABA and ethephon treatments. This expression patterns was accordant with the aborted fruits. Thus, CsTIR1 and CsAFB2 may be important regulators during cucumber fruit development.


Theoretical and Applied Genetics | 2018

Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus

Kaijing Zhang; Xing Wang; Wenwei Zhu; Xiaodong Qin; Jian Xu; Chunyan Cheng; Qunfeng Lou; Ji Li; Jinfeng Chen

Key messageA single recessive gene for complete resistance to powdery mildew and a major-effect QTL for partial resistance to downy mildew were co-localized in aCucumis hystrixintrogression line of cucumber.AbstractDowny mildew (DM) and powdery mildew (PM) are two major foliar diseases in cucumber. DM resistance (DMR) and PM resistance (PMR) may share common components; however, the genetic relationship between them remains unclear. IL52, a Cucumis hystrix introgression line of cucumber which has been reported to possess DMR, was recently identified to exhibit PMR as well. In this study, a single recessive gene pm for PMR was mapped to an approximately 468-kb region on chromosome 5 with 155 recombinant inbred lines (RILs) and 193 F2 plants derived from the cross between a susceptible line ‘changchunmici’ and IL52. Interestingly, pm was co-localized with the major-effect DMR QTL dm5.2 confirmed by combining linkage analysis and BSA-seq, which was consistent with the observed linkage of DMR and PMR in IL52. Further, phenotype–genotype correlation analysis of DMR and PMR in the RILs indicated that the co-localized locus pm/dm5.2 confers complete resistance to PM and partial resistance to DM. Seven candidate genes for DMR were identified within dm5.2 by BSA-seq analysis, of which Csa5M622800.1, Csa5M622830.1 and Csa5M623490.1 were also the same candidate genes for PMR. A single nucleotide polymorphism that is present in the 3ˊ untranslated region (3′UTR) of Csa5M622830.1 co-segregated perfectly with PMR. The GATA transcriptional factor gene Csa5M622830.1 may be a likely candidate gene for DMR and PMR. This study has provided a clear evidence for the relationship between DMR and PMR in IL52 and sheds new light on the potential value of IL52 for cucumber DMR and PMR breeding program.

Collaboration


Dive into the Qunfeng Lou's collaboration.

Top Co-Authors

Avatar

Jinfeng Chen

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ji Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunyan Cheng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li Jia

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shuqiong Yang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian Xu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Qin

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunzhu Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ziang Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chuntao Qian

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge