Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qunlin Chen is active.

Publication


Featured researches published by Qunlin Chen.


Human Brain Mapping | 2015

A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation.

Xin Wu; Wenjing Yang; Dandan Tong; Jiangzhou Sun; Qunlin Chen; Dongtao Wei; Qinglin Zhang; Meng Zhang; Jiang Qiu

In this study, an activation likelihood estimation (ALE) meta‐analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long‐term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability). Hum Brain Mapp 36:2703–2718, 2015.


NeuroImage | 2014

Examining brain structures associated with perceived stress in a large sample of young adults via voxel-based morphometry

Haijiang Li; Wenfu Li; Dongtao Wei; Qunlin Chen; Todd Jackson; Qinglin Zhang; Jiang Qiu

Perceived stress reflects the extent to which situations are appraised as stressful at a given point in ones life. Past brain imaging studies have examined activation patterns underlying the stress response, yet focal differences in brain structures related to perceived stress are not well understood, especially when considering gray matter (GM) and white matter (WM) structures simultaneously. In this study, voxel-based morphometry was used to investigate relations between GM/WM volume and perceived stress levels in a large young adult sample. Participants (138 men, 166 women) completed the Perceived Stress Scale (PSS; Cohen et al., 1983) and underwent an anatomical magnetic resonance imaging scan. Higher PSS scores were associated with larger GM volume in a cluster that included regions in the bilateral parahippocampal gyrus, fusiform cortex, and entorhinal cortex and smaller GM volume in a cluster that included regions of the right insular cortex. Higher PSS scores were also related to smaller WM volume in a cluster that included the body of the corpus callosum. This pattern of results remained significant even after controlling for effects of general intelligence, socioeconomic status, and depression. Together, findings suggest a unique structural basis for individual differences in perceived stress, distributed across different GM and WM regions of the brain.


Neuropsychologia | 2015

Individual differences in verbal creative thinking are reflected in the precuneus.

Qunlin Chen; Ting Xu; Wenjing Yang; Yadan Li; Jiangzhou Sun; Kangcheng Wang; Roger E. Beaty; Qinglin Zhang; Xi-Nian Zuo; Jiang Qiu

There have been many structural and functional imaging studies of creative thinking, but combining structural and functional magnetic resonance imaging (MRI) investigations with respect to creative thinking is still lacking. Thus, the aim of the present study was to explore the associations among inter-individual verbal creative thinking and both regional homogeneity and cortical morphology of the brain surface. We related the local functional homogeneity of spontaneous brain activity to verbal creative thinking and its dimensions--fluency, originality, and flexibility--by examining these inter-individual differences in a large sample of 268 healthy college students. Results revealed that people with high verbal creative ability and high scores for the three dimensions of creativity exhibited lower regional functional homogeneity in the right precuneus. Both cortical volume and thickness of the right precuneus were positively associated with individual verbal creativity and its dimensions. Moreover, originality was negatively correlated with functional homogeneity in the left superior frontal gyrus and positively correlated with functional homogeneity in the right occipito-temporal gyrus. In contrast, flexibility was positively correlated with functional homogeneity in the left superior and middle occipital gyrus. These findings provide additional evidence of a link between verbal creative thinking and brain structure in the right precuneus--a region involved in internally--focused attention and effective semantic retrieval-and further suggest that local functional homogeneity of verbal creative thinking has neurobiological relevance that is likely based on anatomical substrates.


NeuroImage | 2014

Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study

Qunlin Chen; Wenjing Yang; Wenfu Li; Dongtao Wei; Haijiang Li; Qiao Lei; Qinglin Zhang; Jiang Qiu

Although researchers generally concur that creativity involves the production of novel and useful products, the neural basis of creativity remains elusive due to the complexity of the cognitive processes involved. Recent studies have shown that highly creative individuals displayed more cognitive flexibility. However, direct evidence supporting the relationship between creativity and cognitive flexibility has rarely been investigated using both structural and functional neuroimaging techniques. We used a combined voxel-based morphometry and resting-state functional connectivity (rsFC) analysis to investigate the relationship between individual creativity ability assessed by the creative achievement questionnaire (CAQ), and regional gray matter volume (GMV), as well as intrinsic functional connectivity. Results showed that CAQ scores negatively correlated with GMV in the rostral anterior cingulate cortex (ACC) and the bilateral dorsal ACC (dACC) extending to supplementary motor area, but positively correlated with GMV in the bilateral superior frontal gyrus and ventral medial prefrontal cortex (vmPFC). Further functional connectivity analysis revealed that higher creative achievement was inversely associated with the strength of rsFC between the dACC and medial superior frontal gyrus (mSFG), right middle frontal gyrus, and left orbito-frontal insula. Moreover, the association between the dACC-mSFG connectivity and CAQ scores was mediated by cognitive flexibility, assessed by a task-switching paradigm. These findings indicate that individual differences in creative achievement are associated with both brain structure and corresponding intrinsic functional connectivity involved in cognitive flexibility and deliberate creative processing. Furthermore, dACC-mSFG connectivity may affect creative achievement through its impact on cognitive flexibility.


Human Brain Mapping | 2016

Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training.

Jiangzhou Sun; Qunlin Chen; Qinglin Zhang; Yadan Li; Haijiang Li; Dongtao Wei; Wenjing Yang; Jiang Qiu

Creativity is commonly defined as the ability to produce something both novel and useful. Stimulating creativity has great significance for both individual success and social improvement. Although increasing creative capacity has been confirmed to be possible and effective at the behavioral level, few longitudinal studies have examined the extent to which the brain function and structure underlying creativity are plastic. A cognitive stimulation (20 sessions) method was used in the present study to train subjects and to explore the neuroplasticity induced by training. The behavioral results revealed that both the originality and the fluency of divergent thinking were significantly improved by training. Furthermore, functional changes induced by training were observed in the dorsal anterior cingulate cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and posterior brain regions. Moreover, the gray matter volume (GMV) was significantly increased in the dACC after divergent thinking training. These results suggest that the enhancement of creativity may rely not only on the posterior brain regions that are related to the fundamental cognitive processes of creativity (e.g., semantic processing, generating novel associations), but also on areas that are involved in top‐down cognitive control, such as the dACC and DLPFC. Hum Brain Mapp 37:3375–3387, 2016.


Social Cognitive and Affective Neuroscience | 2015

Regional gray matter volume and anxiety-related traits interact to predict somatic complaints in a non-clinical sample

Dongtao Wei; Xue Du; Wenfu Li; Qunlin Chen; Haijiang Li; Xin Hao; Lei Zhang; Glenn Hitchman; Qinglin Zhang; Jiang Qiu

Somatic complaints can be important features of an individuals expression of anxiety. Anxiety-related traits are also risk factors for somatic symptoms. However, it is not known which neuroanatomical mechanisms may be responsible for this relationship. In this study, our first step was to use voxel-based morphometry (VBM) approaches to investigate the neuroanatomical basis underlying somatic complaints in a large sample of healthy subjects. We found a significant positive correlation between somatic complaints and parahippocampal gyrus (PHG) volume adjacent to the entorhinal cortex. Further analysis revealed that the interaction between PHG volume/entorhinal cortex and neuroticism-anxiety (N-Anx) predicted somatic complaints. Specifically, somatic complaints were associated with higher N-Anx for individuals with increased PHG volume. These findings suggest that increased PHG volume and higher trait anxiety can predict vulnerability to somatic complaints in the general population.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Robust prediction of individual creative ability from brain functional connectivity

Roger E. Beaty; Yoed N. Kenett; Alexander P. Christensen; Monica D. Rosenberg; Mathias Benedek; Qunlin Chen; Andreas Fink; Jiang Qiu; Thomas R. Kwapil; Michael J. Kane; Paul J. Silvia

Significance People’s capacity to generate creative ideas is central to technological and cultural progress. Despite advances in the neuroscience of creativity, the field lacks clarity on whether a specific neural architecture distinguishes the highly creative brain. Using methods in network neuroscience, we modeled individual creative thinking ability as a function of variation in whole-brain functional connectivity. We identified a brain network associated with creative ability comprised of regions within default, salience, and executive systems—neural circuits that often work in opposition. Across four independent datasets, we show that a person’s capacity to generate original ideas can be reliably predicted from the strength of functional connectivity within this network, indicating that creative thinking ability is characterized by a distinct brain connectivity profile. People’s ability to think creatively is a primary means of technological and cultural progress, yet the neural architecture of the highly creative brain remains largely undefined. Here, we employed a recently developed method in functional brain imaging analysis—connectome-based predictive modeling—to identify a brain network associated with high-creative ability, using functional magnetic resonance imaging (fMRI) data acquired from 163 participants engaged in a classic divergent thinking task. At the behavioral level, we found a strong correlation between creative thinking ability and self-reported creative behavior and accomplishment in the arts and sciences (r = 0.54). At the neural level, we found a pattern of functional brain connectivity related to high-creative thinking ability consisting of frontal and parietal regions within default, salience, and executive brain systems. In a leave-one-out cross-validation analysis, we show that this neural model can reliably predict the creative quality of ideas generated by novel participants within the sample. Furthermore, in a series of external validation analyses using data from two independent task fMRI samples and a large task-free resting-state fMRI sample, we demonstrate robust prediction of individual creative thinking ability from the same pattern of brain connectivity. The findings thus reveal a whole-brain network associated with high-creative ability comprised of cortical hubs within default, salience, and executive systems—intrinsic functional networks that tend to work in opposition—suggesting that highly creative people are characterized by the ability to simultaneously engage these large-scale brain networks.


Human Brain Mapping | 2017

Common and distinct brain networks underlying verbal and visual creativity

Wenfeng Zhu; Qunlin Chen; Lingxiang Xia; Roger E. Beaty; Wenjing Yang; Fang Tian; Jiangzhou Sun; Guikang Cao; Qinglin Zhang; Xu Chen; Jiang Qiu

Creativity is imperative to the progression of human civilization, prosperity, and well‐being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. Here, we use functional connectivity analysis of resting‐state functional magnetic resonance imaging data to investigate visual and verbal creativity‐related regions and networks in 282 healthy subjects. We found that functional connectivity within the bilateral superior parietal cortex of the FPN was negatively associated with visual and verbal creativity. The strength of connectivity between the DMN and FPN was positively related to both creative domains. Visual creativity was negatively correlated with functional connectivity within the precuneus of the pDMN and right middle frontal gyrus of the FPN, and verbal creativity was negatively correlated with functional connectivity within the medial prefrontal cortex of the aDMN. Critically, the FPN mediated the relationship between the aDMN and verbal creativity, and it also mediated the relationship between the pDMN and visual creativity. Taken together, decreased within‐network connectivity of the FPN and DMN may allow for flexible between‐network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094–2111, 2017.


Scientific Data | 2017

Longitudinal test-retest neuroimaging data from healthy young adults in southwest China

Wei Liu; Dongtao Wei; Qunlin Chen; Wenjing Yang; Jie Meng; Guorong Wu; Taiyong Bi; Qinglin Zhang; Xi-Nian Zuo; Jiang Qiu

Multimodal magnetic resonance imaging (mMRI) has been widely used to map the structure and function of the human brain, as well as its behavioral associations. However, to date, a large sample with a long-term longitudinal design and a narrow age-span has been lacking for the assessment of test-retest reliability and reproducibility of brain-behavior correlations, as well as the development of novel causal insights into these correlational findings. Here we describe the SLIM dataset, which includes brain and behavioral data across a long-term retest-duration within three and a half years, mMRI scans provided a set of structural, diffusion and resting-state functional MRI images, along with rich samples of behavioral assessments addressed—demographic, cognitive and emotional information. Together with the Consortium for Reliability and Reproducibility (CoRR), the SLIM is expected to accelerate the reproducible sciences of the human brain by providing an open resource for brain-behavior discovery sciences with big-data approaches.


Journal of Affective Disorders | 2016

Abnormal brain activation during directed forgetting of negative memory in depressed patients.

Wenjing Yang; Qunlin Chen; Peiduo Liu; Hongsheng Cheng; Qian Cui; Dongtao Wei; Qinglin Zhang; Jiang Qiu

The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression.

Collaboration


Dive into the Qunlin Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenfu Li

Jining Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge