Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qunxing Huang is active.

Publication


Featured researches published by Qunxing Huang.


Measurement Science and Technology | 2010

Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy

Fei Wang; Kefa Cen; N Li; Jay B. Jeffries; Qunxing Huang; Jianhua Yan; Yong Chi

A tomography system is presented that uses wavelength-scanned direct absorption of two transitions of a target species (NH3 in the demonstration experiment) to determine the distributions of gas concentration and temperature. The absorption measurements are performed simultaneously from four platforms that each rotate a beam from a single laser through an 11° arc, acquiring a data set from all four laser platforms in 100 ms to enable observation of dynamic flow events. The laser is wavelength scanned through two absorption transitions with different internal energy producing two sets of equations with species mole fraction and temperature as independent variables. The mole fraction and temperature distributions are reconstructed using the algebraic reconstruction technique (ART) for this set of incomplete projections. A numerical simulation is used to evaluate the measurement accuracy for measurements of an NH3 mixture escaping from an open pipe. This phantom distribution is then realized in the laboratory and the measurement strategy is demonstrated using a tunable diode laser absorption spectroscopy (TDLAS) measurement using a single laser near 1.5 µm to scan adjacent transitions in NH3. The reconstruction of NH3 concentration and gas temperature is compared with independently determined values to illustrate the fidelity of the tomographically reconstructed distributions for the NH3 mole fraction assuming a fixed temperature and for unknown mole fraction and temperature. Potential extensions of this research in the future include evaluation of other reconstruction algorithms and investigation of the dynamic distribution of various gases for combustion diagnostics.


Waste Management & Research | 2014

Comparison of municipal solid waste treatment technologies from a life cycle perspective in China

Jun Dong; Yong Chi; Daoan Zou; Chao Fu; Qunxing Huang; Mingjiang Ni

China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions.


Optics Letters | 2008

Noncontact temperature measurement by means of CCD cameras in a participating medium

Dong Liu; Fei Wang; Kefa Cen; Jianhua Yan; Qunxing Huang; Yong Chi

An original technique was presented for noncontact three-dimensional temperature field measurement in a participating medium using radiative information captured by a CCD camera. This technique was based on the backward Monte Carlo method and was faster and more efficient than traditional techniques based on the forward Monte Carlo method. A numerical simulation case was adopted to validate the technique. It was found that the technique was capable of reconstructing the three-dimensional temperature field well, even with noisy input data.


Bioresource Technology | 2018

Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic

Yijing Tang; Qunxing Huang; Kai Sun; Yong Chi; Jianhua Yan

In this work, typical organic food waste (soybean protein (SP)) and typical chlorine enriched plastic waste (polyvinyl chloride (PVC)) were chosen as principal MSW components and their interaction during co-pyrolysis was investigated. Results indicate that the interaction accelerated the reaction during co-pyrolysis. The activation energies needed were 2-13% lower for the decomposition of mixture compared with linear calculation while the maximum reaction rates were 12-16% higher than calculation. In the fixed-bed experiments, interaction was observed to reduce the yield of tar by 2-69% and promote the yield of char by 13-39% compared with linear calculation. In addition, 2-6 times more heavy components and 61-93% less nitrogen-containing components were formed for tar derived from mixtures.


Applied Optics | 2012

Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images

Qunxing Huang; Fei Wang; Jianhua Yan; Yong Chi

An inverse radiation analysis using soot emission measured by a high-speed stereoscopic imaging system is described for simultaneous estimation of the 3-D soot temperature and volume fraction distributions in unsteady sooty flames. A new iterative reconstruction method taking self attenuation into account is developed based on the least squares minimum-residual algorithm. Numerical assessment and experimental measurement results of an ethylene/air diffusive flame show that the proposed method is efficient and capable of reconstructing the soot temperature and volume fraction distributions in unsteady flames. The accuracy is improved when self attenuation is considered.


Waste Management | 2015

A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition.

Xuebin Lin; Fei Wang; Yong Chi; Qunxing Huang; Jianhua Yan

A rapid and cost-effective prediction method based on wet physical composition has been developed to determine the lower heating value (LHV) of municipal solid waste (MSW) for practical applications in China. The heating values (HVs) of clean combustibles were measured in detail, and the effect of combustibles, food waste, and ash content on HV was studied to develop the model. The weighted average HV can be used to predict the MSW HV with high accuracy. Based on the moisture measurements of each major real combustible and the HV of clean solid waste, a predictive model of the LHV of real MSW was developed. To assess the prediction performance, information was collected on 103 MSW samples from 31 major cities in China from 1994 to 2012. Compared with five predictive models based on the wet physical composition from different regions in the world, the predictive result of the developed model is the most accurate. The prediction performance can be improved further if the MSW is sorted better and if more information is collected on the individual moisture contents of the waste.


Chemosphere | 2016

Catalytic decomposition of gaseous 1,2-dichlorobenzene over CuOx/TiO₂ and CuOx/TiO₂-CNTs catalysts: Mechanism and PCDD/Fs formation.

Qiu-lin Wang; Qunxing Huang; Hui-fan Wu; Shengyong Lu; Hailong Wu; Xiaodong Li; Jianhua Yan

Gaseous 1,2-dichlorobenzene (1,2-DCBz) was catalytically decomposed in a fixed-bed catalytic reactor using composite copper-based titanium oxide (CuOx/TiO2) catalysts with different copper ratios. Carbon nanotubes (CNTs) were introduced to produce novel CuOx/TiO2-CNTs catalysts by the sol-gel method. The catalytic performances of CuOx/TiO2 and CuOx/TiO2-CNTs on 1,2-DCBz oxidative destruction under different temperatures (150-350 °C) were experimentally examined and the correlation between catalyst structure and catalytic activity was characterized and the role of oxygen in catalytic reaction was discussed. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) generation during 1,2-DCBz catalytic oxidation by CuOx/TiO2-CNTs composite catalyst was also examined. Results indicate that the 1,2-DCBz destruction/removal efficiencies of CuOx (4 wt%)/TiO2 catalyst at 150 °C and 350 °C with a GHSV of 3400 h(-1) are 59% and 94% respectively and low-temperature (150 °C) catalytic activity of CuOx/TiO2 on 1,2-DCBz oxidation can be improved from 59 to 77% when CNTs are introduced. Furthermore, oxygen either in catalyst or from reaction atmosphere is indispensible in reaction. The former is offered to activate and oxidize the 1,2-DCBz adsorbed on catalyst, thus can be generally consumed during reaction and the oxygen content in catalyst is observed lost from 39.9 to 35.0 wt% after reacting under inert atmosphere; the latter may replenish the vacancy in catalyst created by the consumed oxygen thus extends the catalyst life and raises the destruction/removal efficiency. The introduction of CNTs also increases the Cu(2+)/Cu(+) ratio, chemisorbed oxygen concentration and surface lattice oxygen binding energy which are closely related with catalytic activity. PCDD/Fs is confirmed to be formed when 1,2-DCBz catalytically oxidized by CuOx/TiO2-CNTs composite catalyst with sufficient oxygen (21%), proper temperature (350 °C) and high concentration of 1,2-DCBz feed (120 ppm).


Waste Management | 2017

Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators

Haihui You; Zengyi Ma; Yijun Tang; Yuelan Wang; Jianhua Yan; Mingjiang Ni; Kefa Cen; Qunxing Huang

The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system.


Environmental Technology | 2015

Effect of HCl/SO2/NH3/O2 and mineral sorbents on the partitioning behaviour of heavy metals during the thermal treatment of solid wastes

Qunxing Huang; Xu Cai; Moussa Mallaye Alhadj Mallah; Yong Chi; Jianhua Yan

The high concentration of heavy metals in solid wastes may cause serious pollution during thermal treatment. We have investigated, theoretically and experimentally, the effects of several important flue gas species and mineral sorbents on the partitioning behaviour of four major heavy metals (cadmium, lead, zinc and copper) which are often present in municipal solid waste (MSW). Their concentrations in bottom ash, fly ash and flue gas were quantified when model MSW samples were treated thermally under different conditions. The evaporation ratio of the four metals, excluding Cu, increased with decreasing oxygen concentration. The presence of HCl promotes heavy metal evaporation by preventing the formation of stable metallic species, especially for Zn (evaporation of more than 20%). An increase in oxygen concentration has a negative influence on the effect of HCl. In the presence of SO2, Cd and Pb exhibited a higher evaporation ratio, while Zn and Cu were insensitive to the change. SO2 also inhibits Cd vaporization in an oxidative atmosphere. The effect of NH3 on reducing the metal volatilization rate was established indirectly. Calcium oxide addition enhances metal evaporation except for that of Zn (which shows a decrease of 38%). Although desulphurization by calcium injection decreases the volume of acid gas, calcium affects heavy metal pollution control adversely. The presence or addition of SiO2- or Al2O3-containing minerals can lead to the formation of stable metallic salts. This may favour the control of Cd, Pb, Zn and Cu volatilization up to 13%, 50%, 17.5% and 19%, respectively.


International Journal of Heat and Mass Transfer | 2012

A two-step discrete method for reconstruction of temperature distribution in a three-dimensional participating medium

Qunxing Huang; Fei Wang; Jianhua Yan; Yong Chi

An iterative method LSMR is presented for solving linear systems Ax = b and leastsquares problems min ‖Ax−b‖2, with A being sparse or a fast linear operator. LSMR is based on the Golub-Kahan bidiagonalization process. It is analytically equivalent to the MINRES method applied to the normal equation ATAx = ATb, so that the quantities ‖Ark‖ are monotonically decreasing (where rk = b−Axk is the residual for the current iterate xk). We observe in practice that ‖rk‖ also decreases monotonically, so that compared to LSQR (for which only ‖rk‖ is monotonic) it is safer to terminate LSMR early. We also report some experiments with reorthogonalization.

Collaboration


Dive into the Qunxing Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge