Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quyen T. Nguyen is active.

Publication


Featured researches published by Quyen T. Nguyen.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases

Emilia S. Olson; Tao Jiang; Todd A. Aguilera; Quyen T. Nguyen; Lesley G. Ellies; Miriam Scadeng; Roger Y. Tsien

High-resolution imaging of molecules intrinsically involved in malignancy and metastasis would be of great value for clinical detection and staging of tumors. We now report in vivo visualization of matrix metalloproteinase activities by MRI and fluorescence of dendrimeric nanoparticles coated with activatable cell penetrating peptides (ACPPs), labeled with Cy5, gadolinium, or both. Uptake of such nanoparticles in tumors is 4- to 15-fold higher than for unconjugated ACPPs. With fluorescent molecules, we are able to detect residual tumor and metastases as small as 200 μm, which can be resected under fluorescence guidance and analyzed histopathologically with fluorescence microscopy. We show that uptake via this mechanism is comparable to that of other near infrared protease sensors, with the added advantage that the approach is translatable to MRI. Once activated, the Gd-labeled nanoparticles deposit high levels (30–50 μM) of Gd in tumor parenchyma with even higher amounts deposited in regions of infiltrative tumor, resulting in useful T1 contrast lasting several days after injection. These results should improve MRI-guided clinical staging, presurgical planning, and intraoperative fluorescence-guided surgery. The approach may be generalizable to deliver radiation-sensitizing and chemotherapeutic agents.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival

Quyen T. Nguyen; Emilia S. Olson; Todd A. Aguilera; Tao Jiang; Miriam Scadeng; Lesley G. Ellies; Roger Y. Tsien

The completeness of tumor removal during surgery is dependent on the surgeon’s ability to differentiate tumor from normal tissue using subjective criteria that are not easily quantifiable. A way to objectively assess tumor margins during surgery in patients would be of great value. We have developed a method to visualize tumors during surgery using activatable cell-penetrating peptides (ACPPs), in which the fluorescently labeled, polycationic cell-penetrating peptide (CPP) is coupled via a cleavable linker to a neutralizing peptide. Upon exposure to proteases characteristic of tumor tissue, the linker is cleaved, dissociating the inhibitory peptide and allowing the CPP to bind to and enter tumor cells. In mice, xenografts stably transfected with green fluorescent protein show colocalization with the Cy5-labeled ACPPs. In the same mouse models, Cy5-labeled free ACPPs and ACPPs conjugated to dendrimers (ACPPDs) delineate the margin between tumor and adjacent tissue, resulting in improved precision of tumor resection. Surgery guided by ACPPD resulted in fewer residual cancer cells left in the animal after surgery as measured by Alu PCR. A single injection of ACPPD dually labeled with Cy5 and gadolinium chelates enabled preoperative whole-body tumor detection by MRI, intraoperative guidance by real-time fluorescence, intraoperative histological analysis of margin status by fluorescence, and postoperative MRI tumor quantification. Animals whose tumors were resected with ACPPD guidance had better long-term tumor-free survival and overall survival than animals whose tumors were resected with traditional bright-field illumination only.


Nature Reviews Cancer | 2013

Fluorescence-guided surgery with live molecular navigation — a new cutting edge

Quyen T. Nguyen; Roger Y. Tsien

A glowing new era in cancer surgery may be dawning. Using fluorescently labelled markers, surgical molecular navigation means that tumours and nerves can be displayed in real time intra-operatively in contrasting pseudocolours, which allows more complete tumour resection while preserving important structures. These advances can potentially cause a paradigm shift in cancer surgery, improving patient outcome and decreasing overall health-care costs.


Nature Neuroscience | 2002

Pre-existing pathways promote precise projection patterns.

Quyen T. Nguyen; Joshua R. Sanes; Jeff W. Lichtman

A large body of evidence shows that molecular cues promote specific synapse formation by guiding axons and by mediating their association with targets, but much less is known about the contribution of physical cues (such as mechanical constraints) to these processes. Here we used the peripheral motor system to investigate the latter issue. In living mice, we viewed individual motor axons bearing a fluorescent reporter, and mapped the cohort of muscle fibers that they innervated both before and after nerve damage. When gross trauma was minimized (by a nerve-crushing rather than nerve-cutting procedure), regenerating axons retraced their former pathways, bifurcated at original branch points, and formed neuromuscular junctions on the same fibers that they originally innervated. Axonal growth through tubes of non-neural cells seemed to account for this specificity, and specificity degraded when the tubes were cut. These results suggest that nonspecific guidance cues can be sufficient to generate specific synaptic circuitry.


Integrative Biology | 2009

In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer

Emilia S. Olson; Todd A. Aguilera; Tao Jiang; Lesley G. Ellies; Quyen T. Nguyen; Edmund Wong; Larry A. Gross; Roger Y. Tsien

Activatable cell penetrating peptides (ACPPs) are novel in vivo targeting agents comprised of a polycationic cell penetrating peptide (CPP) connected via a cleavable linker to a neutralizing polyanion (). Adsorption and uptake into cells are inhibited until the linker is proteolyzed. An ACPP cleavable by matrix metalloproteinase-2 (MMP-2) in vitro was the first one demonstrated to work in a tumor model in vivo, but only HT-1080 xenografts and resected human squamous cell carcinomas were tested. Generality to other cancer types, in vivo selectivity of ACPPs for MMPs, and spatial resolution require further characterization. We now show that ACPPs can target many xenograft tumor models from different cancer sites, as well as a thoroughly studied transgenic model of spontaneous breast cancer (mouse mammary tumor virus promoter driving polyoma middle T antigen, MMTV-PyMT). Pharmacological inhibitors and genetic knockouts indicate that current ACPPs are selective for MMP-2 and MMP-9 in the above in vivo models. In accord with the known local distribution of MMP activity, accumulation is strongest at the tumor-stromal interface in primary tumors and associated metastases, indicating better spatial resolution (<50 mum) than other currently available MMP-cleavable probes. We also find that background uptake of ACPPs into normal tissues such as cartilage can be decreased by appending inert macromolecules of 30-50 KDa to the polyanionic inhibitory domain. Our results validate an approach that should generally deliver imaging agents and chemotherapeutics to sites of invasion, tumor-promoting inflammation, and metastasis.


Nature Biotechnology | 2011

Fluorescent peptides highlight peripheral nerves during surgery in mice

Michael Whitney; Jessica L. Crisp; Linda T. Nguyen; Beth Friedman; Larry A. Gross; Paul Steinbach; Roger Y. Tsien; Quyen T. Nguyen

Nerve preservation is an important goal during surgery because accidental transection or injury leads to significant morbidity, including numbness, pain, weakness or paralysis. Nerves are usually identified by their appearance and relationship to nearby structures or detected by local electrical stimulation (electromyography), but thin or buried nerves are sometimes overlooked. Here, we use phage display to select a peptide that binds preferentially to nerves. After systemic injection of a fluorescently labeled version of the peptide in mice, all peripheral nerves are clearly delineated within 2 h. Contrast between nerve and adjacent tissue is up to tenfold, and useful contrast lasts up to 8 h. No changes in behavior or activity are observed after treatment, indicating a lack of obvious toxicity. The fluorescent probe also labels nerves in human tissue samples. Fluorescence highlighting is independent of axonal integrity, suggesting that the probe could facilitate surgical repair of injured nerves and help prevent accidental transection.


Cancer Research | 2013

Real time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell penetrating peptides

Elamprakash N. Savariar; Csilla N. Felsen; Nadia Nashi; Tao Jiang; Lesley G. Ellies; Paul Steinbach; Roger Y. Tsien; Quyen T. Nguyen

Management of metastatic disease is integral to cancer treatment. Evaluation of metastases often requires surgical removal of all anatomically susceptible lymph nodes for ex vivo pathologic examination. We report a family of novel ratiometric activatable cell-penetrating peptides, which contain Cy5 as far red fluorescent donor and Cy7 as near-infrared fluorescent acceptor. Cy5 is quenched in favor of Cy7 re-emission until the intervening linker is cut by tumor-associated matrix metalloproteinases-2 and 9 (MMP2,9) or elastases. Such cleavage increases the Cy5:Cy7 emission ratio 40-fold and triggers tissue retention of the Cy5-containing fragment. This ratiometric increase provides an accelerated and quantifiable metric to identify primary tumors and metastases to liver and lymph nodes with increased sensitivity and specificity. This technique represents a significant advance over existing nonratiometric protease sensors and sentinel lymph node detection methods, which give no information about cancer invasion.


Angewandte Chemie | 2013

Ratiometric Activatable Cell-Penetrating Peptides Provide Rapid In Vivo Readout of Thrombin Activation

Michael Whitney; Elamprakash N. Savariar; Beth Friedman; Rachel A. Levin; Jessica L. Crisp; Heather L. Glasgow; Roy B. Lefkowitz; Stephen R. Adams; Paul Steinbach; Nadia Nashi; Quyen T. Nguyen; Roger Y. Tsien

In real time: thrombin activation in vivo can be imaged in real time with ratiometric activatable cell penetrating peptides (RACPPs). RACPPs are designed to combine 1) dual-emission ratioing, 2) far red to infrared wavelengths for in vivo mammalian imaging, and 3) cleavage-dependent spatial localization. The most advanced RACPP uses norleucine (Nle)-TPRSFL as a linker that increases sensitivity to thrombin by about 90-fold.


Nature Genetics | 2014

Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss

Andrew M. Gross; Ryan K. Orosco; John Paul Shen; Ann Marie Egloff; Hannah Carter; Matan Hofree; Michel Choueiri; Charles S. Coffey; Scott M. Lippman; D. N. Hayes; Ezra E.W. Cohen; Grandis; Quyen T. Nguyen; Trey Ideker

Head and neck squamous cell carcinoma (HNSCC) is characterized by aggressive behavior with a propensity for metastasis and recurrence. Here we report a comprehensive analysis of the molecular and clinical features of HNSCC that govern patient survival. We find that TP53 mutation is frequently accompanied by loss of chromosome 3p and that the combination of these events is associated with a surprising decrease in survival time (1.9 years versus >5 years for TP53 mutation alone). The TP53-3p interaction is specific to chromosome 3p and validates in HNSCC and pan-cancer cohorts. In human papillomavirus (HPV)-positive tumors, in which HPV inactivates TP53, 3p deletion is also common and is associated with poor outcomes. The TP53-3p event is modified by mir-548k expression, which decreases survival further, and is mutually exclusive with mutations affecting RAS signaling. Together, the identified markers underscore the molecular heterogeneity of HNSCC and enable a new multi-tiered classification of this disease.


Integrative Biology | 2012

In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity

Emilia S. Olson; Michael Whitney; Beth Friedman; Todd A. Aguilera; Jessica L. Crisp; Fred M. Baik; Tao Jiang; Stephen M. Baird; Sotirios Tsimikas; Roger Y. Tsien; Quyen T. Nguyen

Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.

Collaboration


Dive into the Quyen T. Nguyen's collaboration.

Top Co-Authors

Avatar

Roger Y. Tsien

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Friedman

University of California

View shared research outputs
Top Co-Authors

Avatar

Ryan K. Orosco

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge