R. Alan Wilson
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Alan Wilson.
Nature | 2009
Matthew Berriman; Brian J. Haas; Philip T. LoVerde; R. Alan Wilson; Gary P. Dillon; Gustavo C. Cerqueira; Susan T. Mashiyama; Bissan Al-Lazikani; Luiza F. Andrade; Peter D. Ashton; Martin Aslett; Daniella Castanheira Bartholomeu; Gaëlle Blandin; Conor R. Caffrey; Avril Coghlan; Richard M. R. Coulson; Tim A. Day; Arthur L. Delcher; Ricardo DeMarco; Appoliniare Djikeng; Tina Eyre; John Gamble; Elodie Ghedin; Yong-Hong Gu; Christiane Hertz-Fowler; Hirohisha Hirai; Yuriko Hirai; Robin Houston; Alasdair Ivens; David A. Johnston
Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
Nature Genetics | 2003
Sergio Verjovski-Almeida; Ricardo DeMarco; Elizabeth A. L. Martins; Pedro Edson Moreira Guimarães; Elida B. Ojopi; Apuã C.M. Paquola; João Paulo Piazza; Milton Yutaka Nishiyama; João Paulo Kitajima; Rachel Adamson; Peter D. Ashton; Maria F. Bonaldo; Patricia S. Coulson; Gary P. Dillon; Leonardo P. Farias; Sheila P. Gregório; Paulo L. Ho; Ricardo A. Leite; L. Cosme C. Malaquias; Regina Célia Pereira Marques; Patricia A. Miyasato; Ana L. T. O. Nascimento; Fernanda Pires Ohlweiler; Eduardo M. Reis; Marcela A. Ribeiro; Renata G. Sá; Gaëlle C. Stukart; M. Bento Soares; Cybele Gargioni; Toshie Kawano
Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.
PLOS Neglected Tropical Diseases | 2012
Anna V. Protasio; Isheng J. Tsai; A. K. Babbage; Sarah Nichol; Martin Hunt; Martin Aslett; Nishadi De Silva; Giles S. Velarde; Timothy J. C. Anderson; Richard Clark; Claire Davidson; Gary P. Dillon; Nancy Holroyd; Philip T. LoVerde; Christine Lloyd; Jacquelline McQuillan; Guilherme Oliveira; Thomas D. Otto; Sophia J. Parker-Manuel; Michael A. Quail; R. Alan Wilson; Adhemar Zerlotini; David W. Dunne; Matthew Berriman
Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasites life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research.
Advances in Parasitology | 2006
Patrick J. Skelly; R. Alan Wilson
The syncytial cytoplasmic layer, termed the tegument, which covers the entire surface of adult schistosomes, is a major interface between the parasite and its host. Since schistosomes can survive for decades within the host bloodstream, they are clearly able to evade host immune responses, and their ability is dependent on the properties of the tegument surface. We review here the molecular organization and biochemical functions of the tegument, combining the extensive literature over the last three decades with recent proteomic studies. We have interpreted the organization of the tegument surface as bounded by a conventional plasma membrane overlain by a membrane-like secretion, the membranocalyx, with which host molecules can associate. The range of parasite proteins, glycans and lipids found in the surface complex is evaluated, together with the host molecules detected. We consider the way in which the tegument surface is formed after cercarial penetration into the skin, and changes that occur as parasites develop to maturity. Lastly, we review the evidence on surface dynamics and turnover.
The Journal of Infectious Diseases | 2001
Matthias Eberl; J. A. M. Langermans; Richard A.W. Vervenne; A. Kwame Nyame; Richard D. Cummings; Alan W. Thomas; Patricia S. Coulson; R. Alan Wilson
Multiple exposures of chimpanzees to the radiation-attenuated schistosome vaccine provoked a strong parasite-specific cellular and humoral immune response. Specific IgM and IgG were directed mainly against glycans on antigens released by cercariae; these were also cross-reactive with soluble antigens from larvae, adult worms, and eggs. Egg deposition was the major antigenic stimulus after challenge of vaccinated and control chimpanzees with normal parasites, eliciting strong antiglycan responses to egg secretions. Glycan epitopes recognized included LacdiNAc, fucosylated LacdiNAc, Lewis(X) (weakly), and those on keyhole limpet hemocyanin. Antibodies to peptide epitopes became prominent only during the chronic phase of infection, as glycan-specific IgM and IgG decreased. Because of their intensity and cross-reactivity, the antiglycan responses resulting from infection could be a smoke screen to subvert the immune system away from more vulnerable larval peptide epitopes. Their occurrence in humans might explain the long time required for antischistosome immunity to build up after infection.
Memorias Do Instituto Oswaldo Cruz | 2006
Simon Braschi; William de Castro Borges; R. Alan Wilson
The tegument surface of the adult schistosome, bounded by a normal plasma membrane overlain by a secreted membranocalyx, holds the key to understanding how schistosomes evade host immune responses. Recent advances in mass spectrometry (MS), and the sequencing of the Schistosoma mansoni transcriptome/genome, have facilitated schistosome proteomics. We detached the tegument from the worm body and enriched its surface membranes by differential extraction, before subjecting the preparation to liquid chromatography-based proteomics to identify its constituents. The most exposed proteins on live worms were labelled with impearmeant biotinylation reagents, and we also developed methods to isolate the membranocalyx for analysis. We identified transporters for sugars, amino acids, inorganic ions and water, which confirm the importance of the tegument plasma membrane in nutrient acquisition and solute balance. Enzymes, including phosphohydrolases, esterases and carbonic anhydrase were located with their catalytic domains external to the plasma membrane, while five tetraspanins, annexin and dysferlin were implicated in membrane architecture. In contrast, few parasite proteins could be assigned to the membranocalyx but mouse immune response proteins, including three immunoglobulins and two complement factors, were detected, plus host membrane proteins such as CD44, integrin and a complement regulatory protein, testifying to the acquisitive properties of the secreted bilayer.
PLOS Neglected Tropical Diseases | 2011
William Castro-Borges; Adam A. Dowle; Rachel S. Curwen; Jane Thomas-Oates; R. Alan Wilson
Background The membrane-associated and membrane-spanning constituents of the Schistosoma mansoni tegument surface, the parasites principal interface with the host bloodstream, have recently been characterized using proteomic techniques. Biotinylation of live worms using membrane-impermeant probes revealed that only a small subset of the proteins was accessible to the reagents. Their position within the multilayered architecture of the surface has not been ascertained. Methodology/Principal Findings An enzymatic shaving approach on live worms has now been used to release the most accessible components, for analysis by MS/MS. Treatment with trypsin, or phosphatidylinositol-specific phospholipase C (PiPLC), only minimally impaired membrane integrity. PiPLC-enriched proteins were distinguished from those released in parasite vomitus or by handling damage, using isobaric tagging. Trypsin released five membrane proteins, Sm200, Sm25 and three annexins, plus host CD44 and the complement factors C3 and C4. Nutrient transporters and ion channels were absent from the trypsin fraction, suggesting a deeper location in the surface complex; surprisingly, two BAR-domain containing proteins were released. Seven parasite and two host proteins were enriched by PiPLC treatment, the vaccine candidate Sm29 being the most prominent along with two orthologues of human CD59, potentially inhibitors of complement fixation. The enzymes carbonic anhydrase and APD-ribosyl cyclase were also enriched, plus Sm200 and alkaline phosphatase. Host GPI-anchored proteins CD48 and CD90, suggest ‘surface painting’ during worm peregrination in the portal system. Conclusions/Significance Our findings suggest that the membranocalyx secreted over the tegument surface is not the inert barrier previously proposed, some tegument proteins being externally accessible to enzymes and thus potentially located within it. Furthermore, the detection of C3 and C4 indicates that the complement cascade is initiated, while two CD59 orthologues suggest a potential mechanism for its inhibition. The detection of several host proteins is a testimonial to the acquisitive properties of the tegument surface. The exposed parasite proteins could represent novel vaccine candidates for combating this neglected disease.
European Journal of Immunology | 2003
Clare H. Sadler; Laura I. Rutitzky; R. Alan Wilson
After infection of mice with Schistosoma mansoni, deposition of eggs in the walls of the intestine and liver provokes an intense (acute) T cell response that peaks at week 8 and, thereafter, down‐modulates as the disease becomes chronic. Egg antigen‐stimulated proliferation of mesenteric lymph node and spleen cells in vitro was intense at week 8 in both IL‐10–/– and wild‐type (WT) mice, while proliferative responses were markedly reduced at week 15 in WT mice, but undiminished in IL‐10–/– animals. Moreover, in the absence of IL‐10 production, levels of both IFN‐γ and IL‐4 remained elevated at week 15. Granulomas around eggs embolized in the livers of WT mice were significantly smaller at week 15 than week 8, whereas those in IL‐10–/ animals were larger at week 8, showed no reduction in size at week 15, and were less sharply demarcated by peripheral collagen. There was also a greater leukocytic infiltration and necrosis of the hepatic parenchyma. These data suggest that in mice IL‐10 regulates not only the intensity of hepatic inflammation, but also granuloma organization and cohesiveness. It is a crucial agent in the down‐modulation of immune responses and immunopathology that defines the transition from acute to chronic disease.
Journal of Proteomics | 2011
James P. Hewitson; Yvonne Harcus; Janice Murray; Maaike van Agtmaal; Kara J. Filbey; John Grainger; Stephen Bridgett; Mark Blaxter; Peter D. Ashton; David A. Ashford; Rachel S. Curwen; R. Alan Wilson; Adam A. Dowle; Rick M. Maizels
The intestinal helminth parasite, Heligmosomoides polygyrus bakeri offers a tractable experimental model for human hookworm infections such as Ancylostoma duodenale and veterinary parasites such as Haemonchus contortus. Parasite excretory-secretory (ES) products represent the major focus for immunological and biochemical analyses, and contain immunomodulatory molecules responsible for nematode immune evasion. In a proteomic analysis of adult H. polygyrus secretions (termed HES) matched to an extensive transcriptomic dataset, we identified 374 HES proteins by LC-MS/MS, which were distinct from those in somatic extract HEx, comprising 446 identified proteins, confirming selective export of ES proteins. The predominant secreted protein families were proteases (astacins and other metalloproteases, aspartic, cysteine and serine-type proteases), lysozymes, apyrases and acetylcholinesterases. The most abundant products were members of the highly divergent venom allergen-like (VAL) family, related to Ancylostoma secreted protein (ASP); 25 homologues were identified, with VAL-1 and -2 also shown to be associated with the parasite surface. The dominance of VAL proteins is similar to profiles reported for Ancylostoma and Haemonchus ES products. Overall, this study shows that the secretions of H. polygyrus closely parallel those of clinically important GI nematodes, confirming the value of this parasite as a model of helminth infection.
Molecular & Cellular Proteomics | 2007
Jihye Jang-Lee; Rachel S. Curwen; Peter D. Ashton; Bérangère Tissot; William Mathieson; Maria Panico; Anne Dell; R. Alan Wilson; Stuart M. Haslam
The parasitic helminth Schistosoma mansoni is a major public health concern in many developing countries. Glycoconjugates, and in particular the carbohydrate component of these products, represent the main immunogenic challenge to the host and could therefore represent one of the crucial determinants for successful parasite establishment. Here we report a comparative glycomics analysis of the N- and O-glycans derived from glycoproteins present in S. mansoni egg (egg-secreted protein) and cercarial (0–3-h released protein) secretions by a combination of mass spectrometric techniques. Our results show that S. mansoni secrete glycoproteins with glycosylation patterns that are complex and stage-specific. Cercarial stage secretions were dominated by N-glycans that were core-xylosylated, whereas N-glycans from egg secretions were predominantly core-difucosylated. O-Glycan core structures from cercarial secretions primarily consisted of the core sequence Galβ1→3(Galβ1→6)GalNAc, whereas egg-secreted O-glycans carried the mucin-type core 1 (Galβ1→3GalNAc) and 2 (Galβ1→3(GlcNAcβ1→6)GalNAc) structures. Additionally we identified a novel O-glycan core in both secretions in which a Gal residue is linked to the protein. Terminal structures of N- and O-glycans contained high levels of fucose and include stage-specific structures. These glycan structures identified in S. mansoni secretions are potentially antigenic motifs and ligands for carbohydrate-binding proteins of the host immune system.