R. Andy McKinley
Air Force Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Andy McKinley.
NeuroImage | 2014
Jeremy T. Nelson; R. Andy McKinley; Edward J. Golob; Joel S. Warm; Raja Parasuraman
Sustained attention, often referred to as vigilance in humans, is the ability to maintain goal-directed behavior for extended periods of time and respond to intermittent targets in the environment. With greater time-on-task the ability to detect targets decreases and reaction time increases-a phenomenon termed the vigilance decrement. The purpose of this study was to examine the role of dorsolateral prefrontal cortex in the vigilance decrement. Subjects (n=19) received prefrontal transcranial direct current stimulation (tDCS) at one of two different time points during a vigilance task (early or late). The impact of tDCS was examined using measures of behavior, hemispheric blood flow velocity, and regional blood oxygenation relative to sham stimulation. In the sham condition greater time-on-task was accompanied by fewer target detections and slower reaction times, indicating a vigilance decrement, and decreased blood flow velocity. tDCS significantly altered baseline task-induced physiologic and behavioral changes, dependent on the time of stimulation administration and electrode configuration (determining polarity of stimulation). Compared to the sham condition, with more time-on-task blood flow velocity decreased less and cerebral oxygenation increased more in the tDCS condition. Behavioral measures showed a significant improvement in target detection performance with tDCS compared to the sham stimulation. Signal detection analysis revealed a significant change in operator discriminability and response bias with increased time-on-task, as well as interactions between time of stimulation administration and electrode configuration. Current density modeling of tDCS showed high densities in the medial prefrontal cortex and anterior cingulate cortex. These findings confirm that cerebral hemodynamic measures provide an index of resource utilization and point to the central role of the frontal cortex in vigilance. Further, they suggest that modulation of the frontal cortices-and connected structures-influences the availability of vigilance resources. These findings indicate that tDCS may be well-suited to mitigate performance degradation in work settings requiring sustained attention or as a possible treatment for neurological or psychiatric disorders involving sustained attention.
NeuroImage | 2012
R. Andy McKinley; Nathaniel Bridges; Craig M. Walters; Jeremy T. Nelson
This paper proposes a shift in the way researchers currently view and use transcranial brain stimulation technologies. From a neuroscience perspective, the standard application of both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) has been mainly to explore the function of various brain regions. These tools allow for noninvasive and painless modulation of cortical tissue. In the course of studying the function of an area, many studies often report enhanced performance of a task during or following the stimulation. However, little follow-up research is typically done to further explore these effects. Approaching this growing pool of cognitive neuroscience literature with a neuroergonomics mindset (i.e., studying the brain at work), the possibilities of using these stimulation techniques for more than simply investigating the function of cortical areas become evident. In this paper, we discuss how cognitive neuroscience brain stimulation studies may complement neuroergonomics research on human performance optimization. And, through this discussion, we hope to shift the mindset of viewing transcranial stimulation techniques as solely investigatory basic science tools or possible clinical therapeutic devices to viewing transcranial stimulation techniques as interventional tools to be incorporated in applied science research and systems for the augmentation and enhancement of human operator performance.
Applied Ergonomics | 2014
Lindsey K. McIntire; R. Andy McKinley; Chuck Goodyear; John P. McIntire
Research has shown that sustained attention or vigilance declines over time on task. Sustained attention is necessary in many environments such as air traffic controllers, cyber operators, and imagery analysts. A lapse of attention in any one of these environments can have harmful consequences. The purpose of this study was to determine if eye blink metrics from an eye-tracker are related to changes in vigilance performance and cerebral blood flow velocities. Nineteen participants performed a vigilance task while wearing an eye-tracker on four separate days. Blink frequency and duration changed significantly over time during the task. Both blink frequency and duration increased as performance declined and right cerebral blood flow velocity declined. These results suggest that eye blink information may be an indicator of arousal levels. Using an eye-tracker to detect changes in eye blinks in an operational environment would allow preventative measures to be implemented, perhaps by providing perceptual warning signals or augmenting human cognition through non-invasive brain stimulation techniques.
Brain Stimulation | 2014
Lindsey K. McIntire; R. Andy McKinley; Chuck Goodyear; Justin Nelson
BACKGROUND Sleep deprivation from extended duty hours is a common complaint for many occupations. Caffeine is one of the most common countermeasures used to combat fatigue. However, the benefits of caffeine decline over time and with chronic use. OBJECTIVE Our objective was to evaluate the efficacy of anodal transcranial direct current stimulation (tDCS) applied to the pre-frontal cortex at 2 mA for 30 min to remediate the effects of sleep deprivation and to compare the behavioral effects of tDCS with those of caffeine. METHODS Three groups of 10 participants each received either active tDCS with placebo gum, caffeine gum with sham tDCS, or sham tDCS with placebo gum during 30 h of extended wakefulness. RESULTS Our results show that tDCS prevented a decrement in vigilance and led to better subjective ratings for fatigue, drowsiness, energy, and composite mood compared to caffeine and control in sleep-deprived individuals. Both the tDCS and caffeine produced similar improvements in latencies on a short-term memory task and faster reaction times in a psychomotor task when compared to the placebo group. Interestingly, changes in accuracy for the tDCS group were not correlated to changes in mood; whereas, there was a relationship for the caffeine and sham groups. CONCLUSION Our data suggest that tDCS could be a useful fatigue countermeasure and may be more beneficial than caffeine since boosts in performance and mood last several hours.
Behavioral Neuroscience | 2013
R. Andy McKinley; Lindsey K. McIntire; Nathaniel Bridges; Charles Goodyear; Michael P. Weisend
Humans today are routinely and increasingly presented with vast quantities of data that challenge their capacity for efficient processing. To restore the balance between man and machine, it is worthwhile to explore new methods for enhancing or accelerating this capacity. This study was designed to investigate the efficacy of transcranial DC stimulation (tDCS) to reduce training time and increase proficiency in spatial recognition using a simulated synthetic aperture radar (SAR) task. Twenty-seven Air Force active duty members volunteered to participate in the study. Each participant was assigned to 1 of 3 stimulation groups and received two, 90-min training sessions on a target search and identification task using SAR imagery followed by a test. The tDCS anode was applied to site F10 according to the 10-20 electroencephalographic electrode convention while the cathode was placed on the contralateral bicep. Group 1 received anodal tDCS at 2 mA for 30 min in the first training session and sham tDCS in the second session. Group 2 received the stimulation conditions in the opposite order. Group 3 did not receive stimulation at all. Results showed that participants receiving training plus tDCS attained visual search accuracies ~25% higher than those provided with sham stimulation or no stimulation. However, a corresponding performance improvement was not found in the first training session for the change detection portion of the task. This indicates that experience with the imagery is important in the tDCS-elicited performance improvements in change detection.
Human Factors | 2011
R. Andy McKinley; Lindsey McIntire; Regina M. Schmidt; Daniel W. Repperger; John A. Caldwell
Objectives: This study evaluated oculometrics as a detector of fatigue in Air Force–relevant tasks after sleep deprivation. Using the metrics of total eye closure duration (PERCLOS) and approximate entropy (ApEn), the relation between these eye metrics and fatigue-induced performance decrements was investigated. Background: One damaging effect to the successful outcome of operational military missions is that attributed to sleep deprivation-induced fatigue. Consequently, there is interest in the development of reliable monitoring devices that can assess when an operator is overly fatigued. Method: Ten civilian participants volunteered to serve in this study. Each was trained on three performance tasks: target identification, unmanned aerial vehicle landing, and the psychomotor vigilance task (PVT). Experimental testing began after 14 hr awake and continued every 2 hr until 28 hr of sleep deprivation was reached. Results: Performance on the PVT and target identification tasks declined significantly as the level of sleep deprivation increased. These performance declines were paralleled more closely by changes in the ApEn compared to the PERCLOS measure. Conclusion: The results provide evidence that the ApEn eye metric can be used to detect fatigue in relevant military aviation tasks. Application: Military and commercial operators could benefit from an alertness monitoring device.
Frontiers in Human Neuroscience | 2014
Melissa R. Scheldrup; Pamela M. Greenwood; Ryan McKendrick; Jon Strohl; Mahtab Alam; R. Andy McKinley; Raja Parasuraman
There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation—specifically transcranial Direct Current Stimulation (tDCS)—has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.
Brain Behavior and Immunity | 2017
Mark P. Jackson; Dennis Q. Truong; Milene L. Brownlow; Jessica A. Wagner; R. Andy McKinley; Ryan Jankord
A commonly referenced transcranial Direct Current Stimulation (tDCS) safety threshold derives from tDCS lesion studies in the rat and relies on electrode current density (and related electrode charge density) to support clinical guidelines. Concerns about the role of polarity (e.g. anodal tDCS), sub-lesion threshold injury (e.g. neuroinflammatory processes), and role of electrode montage across rodent and human studies support further investigation into animal models of tDCS safety. Thirty-two anesthetized rats received anodal tDCS between 0 and 5mA for 60min through one of three epicranial electrode montages. Tissue damage was evaluated using hemotoxylin and eosin (H&E) staining, Iba-1 immunohistochemistry, and computational brain current density modeling. Brain lesion occurred after anodal tDCS at and above 0.5mA using a 25.0mm2 electrode (electrode current density: 20.0A/m2). Lesion initially occurred using smaller 10.6mm2 or 5.3mm2 electrodes at 0.25mA (23.5A/m2) and 0.5mA (94.2A/m2), respectively. Histological damage was correlated with computational brain current density predictions. Changes in microglial phenotype occurred in higher stimulation groups. Lesions were observed using anodal tDCS at an electrode current density of 20.0A/m2, which is below the previously reported safety threshold of 142.9A/m2 using cathodal tDCS. The lesion area is not simply predicted by electrode current density (and so not by charge density as duration was fixed); rather computational modeling suggests average brain current density as a better predictor for anodal tDCS. Nonetheless, under the assumption that rodent epicranial stimulation is a hypersensitive model, an electrode current density of 20.0A/m2 represents a conservative threshold for clinical tDCS, which typically uses an electrode current density of 2A/m2 when electrodes are placed on the skin (resulting in a lower brain current density).
eye tracking research & application | 2014
Lindsey K. McIntire; John P. McIntire; R. Andy McKinley; Chuck Goodyear
Sustained attention (vigilance) is required for many professions such as air traffic controllers, imagery analysts, airport security screeners, and cyber operators. A lapse in attention in any of these environments can have deadly consequences. The purpose of this study was to determine the ability of pupillometry to detect changes in vigilance performance. Each participant performed a 40-minute vigilance task while wearing an eye-tracker on each of four separate days. Pupil diameter, pupil eccentricity, and pupil velocity all changed significantly over time (p<.05) during the task. Significant correlations indicate that all metrics increased as vigilance performance declined except for pupil diameter, which decreased and the pupil became miotic. These results are consistent with other research on attention, fatigue, and arousal levels. Using an eye-tracker to detect changes in pupillometry in an operational environment would allow interventions to be implemented.
IEEE Transactions on Human-Machine Systems | 2016
Aerial Camden; Chandler A. Phillips; R. Andy McKinley; David Kender; Justin Nelson
Human multitasking performance is important in many areas, such as defense, medicine, and everyday life. However, multitasking can be difficult to research due to a lack of objective metrics. This gap is remedied by applying information theory-based models to multitasking systems. The human operator informatic model is a throughput model that has been successfully applied to the multiple attribute task battery (MATB) software. In this study, auditory and haptic cueing were applied to the monitoring and targeting components of MATB, respectively. Interestingly, overall information throughput was not significantly affected by the cueing. These results can be traced to a mathematical change in operator strategy. In the presence of multisensory cueing, operators responded at higher information rates to the monitoring and targeting components; however, this came at a proportional cost to the communications and resource components. We propose that each operator has an information throughput capacity-an asymptotic limit to the amount of information he/she can process. This theoretical limit is analogous to the “channel capacity” for single tasking proposed by Miller in 1956.
Collaboration
Dive into the R. Andy McKinley's collaboration.
Henry M. Jackson Foundation for the Advancement of Military Medicine
View shared research outputs