R. B. Doak
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. B. Doak.
Journal of Physics D | 2008
R. B. Doak; John C. Spence; Uwe Weierstall; Daniel P. DePonte; Dmitri Starodub; Jared Scott Warner
As shown by Ganan-Calvo and co-workers, a free liquid jet can be compressed in iameter through gas-dynamic forces exerted by a co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single file droplet streams are generated by triggering the device with a piezoelectric actuator. The device is essentially immune to clogging.
Review of Scientific Instruments | 2012
Uwe Weierstall; John C. Spence; R. B. Doak
We describe a liquid jet injector system developed to deliver fully solvated microscopic target species into a probe beam under either vacuum or ambient conditions. The injector was designed specifically for x-ray scattering studies of biological nanospecies using x-ray free electron lasers and third generation synchrotrons, but is of interest to any application in which microscopic samples must be delivered in a fully solvated state and with microscopic precision. By utilizing a gas dynamic virtual nozzle (GDVN) to generate a sample-containing liquid jet of diameter ranging from 300 nm to 20 μm, the injector avoids the clogging problems associated in this size range with conventional Rayleigh jets. A differential pumping system incorporated into the injector shields the experimental chamber from the gas load of the GDVN, making the injector compatible with high vacuum systems. The injector houses a fiber-optically coupled pump laser to illuminate the jet for pump-probe experiments and a hermetically sealed microscope to observe the liquid jet for diagnostics and alignment during operation. This injector system has now been used during several experimental runs at the Linac Coherent Light Source. Recent refinements in GDVN design are also presented.
Nature Communications | 2012
D. Starodub; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; A. Barty; Christoph Bostedt; John D. Bozek; Nicola Coppola; R. B. Doak; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Lars Gumprecht; Christina Y. Hampton; Andreas Hartmann; Robert Hartmann; Peter Holl; Stephan Kassemeyer; Nils Kimmel; H. Laksmono; Mengning Liang; N.D. Loh; Lukas Lomb; Andrew V. Martin; K. Nass; Christian Reich; Daniel Rolles; Benedikt Rudek; A. Rudenko; Joachim Schulz
Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.
Biophysical Journal | 2011
Mark S. Hunter; Daniel P. DePonte; D.A. Shapiro; Richard A. Kirian; Xu Wang; D. Starodub; Stefano Marchesini; Uwe Weierstall; R. B. Doak; John C. Spence; Petra Fromme
Membrane proteins constitute > 30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is < 300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain < 100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain < 200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells.
Journal of Synchrotron Radiation | 2008
D. A. Shapiro; Henry N. Chapman; Daniel P. DePonte; R. B. Doak; Petra Fromme; G. G. Hembree; Mark S. Hunter; Stefano Marchesini; K. E. Schmidt; John C. Spence; Dmitri Starodub; Uwe Weierstall
Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules.
Micron | 2009
Daniel P. DePonte; R. B. Doak; Mark S. Hunter; Zhenquan Liu; Uwe Weierstall; John C. Spence
We present a technique for the study of liquid jets in an environmental scanning electron microscope (ESEM). By using a two-fluid stream consisting of a water inner core and a co-flowing outer gas sheath, we are able to produce liquid streams of sufficiently low flow rate to be compatible with ESEM vacuum requirements. We have recorded ESEM images of water jets down to 700 nm diameter. Details of the jet structure, such as the point of jet breakup and size and shape of the jet cone, can be measured with ESEM to far greater accuracy than with optical microscopy. ESEM imaging of liquid jets offers a valuable research tool for the study of aerosol production, combustion processes, ink-jet generation, and many other attributes of micro- and nanojet systems.
Journal of Synchrotron Radiation | 2008
Dmitri Starodub; P. Rez; G. G. Hembree; Malcolm R. Howells; David A. Shapiro; Henry N. Chapman; Petra Fromme; K. E. Schmidt; Uwe Weierstall; R. B. Doak; John C. Spence
The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed serial crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. The incident X-ray fluence (energy/area) is evaluated that is required to obtain a given resolution from (i) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (ii) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (iii) the spatial frequency cut-off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate counting time and the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. An inverse fourth-power dependence of exposure time on resolution is confirmed, with important implications for all coherent X-ray imaging. It is found that multiple single-file protein beams will be needed for sub-nanometer resolution on current third-generation synchrotrons, but not on fourth-generation designs, where reconstruction of secondary protein structure at a resolution of 7 A should be possible with relatively short exposures.
Ultramicroscopy | 2011
Daniel P. DePonte; J. T. McKeown; Uwe Weierstall; R. B. Doak; John C. Spence
A sufficiently thin column of liquid was produced to permit penetration with a 200 keV electron beam as evidenced by the observation of diffraction rings due to the intermolecular spacing of the liquid samples. For liquid thickness below 800 nm, the diffraction rings became visible above the inelastic background. Studies were carried out in the environmental chamber of a transmission electron microscope using water and isopropanol.
Physical Review Letters | 2008
K. E. Schmidt; John C. Spence; Uwe Weierstall; Richard A. Kirian; Xiaoyu Wang; Dmitri Starodub; Henry N. Chapman; Malcolm R. Howells; R. B. Doak
A method is proposed for obtaining three simultaneous projections of a target from a single radiation pulse, which also allows the relative orientation of successive targets to be determined. The method has application to femtosecond x-ray diffraction, and does not require solution of the phase problem. We show that the principal axes of a compact charge-density distribution can be obtained from projections of its autocorrelation function, which is directly accessible in diffraction experiments. The results may have more general application to time resolved tomographic pump-probe experiments and time-series imaging.
Journal of Chemical Physics | 2005
Dmitri Starodub; R. B. Doak; K. E. Schmidt; Uwe Weierstall; J. S. Wu; John C. Spence; M. Howells; M. Marcus; D. Shapiro; A. Barty; Henry N. Chapman
We consider a monodispersed Rayleigh droplet beam of water droplets doped with proteins. An intense infrared laser is used to align these droplets. The arrangement has been proposed for electron- and x-ray-diffraction studies of proteins which are difficult to crystallize. This paper considers the effect of thermal fluctuations on the angular spread of alignment in thermal equilibrium, and relaxation phenomena, particularly the damping of oscillations excited as the molecules enter the field. The possibility of adiabatic alignment is also considered. We find that damping times in a high-pressure gas cell as used in x-ray-diffraction experiments are short compared with the time taken for molecules to traverse the beam and that a suitably shaped field might be used for electron-diffraction experiments in vacuum to provide adiabatic alignment, thus obviating the need for a damping gas cell.