Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R.Brooks Robey is active.

Publication


Featured researches published by R.Brooks Robey.


Molecular and Cellular Biology | 2004

Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases.

Nathan Majewski; Veronique Nogueira; R.Brooks Robey; Nissim Hay

ABSTRACT The serine/threonine kinase Akt/protein kinase B inhibits apoptosis induced by a variety of stimuli, including overexpression or activation of proapoptotic Bcl-2 family members. The precise mechanisms by which Akt prevents apoptosis are not completely understood, but Akt may function to maintain mitochondrial integrity, thereby preventing cytochrome c release following an apoptotic insult. This effect may be mediated, in part, via promotion of physical and functional interactions between mitochondria and hexokinases. Here we show that growth factor deprivation induced proteolytic cleavage of the proapoptotic Bcl-2 family member BID to yield its active truncated form, tBID. Activated Akt inhibited mitochondrial cytochrome c release and apoptosis following BID cleavage. Akt also antagonized tBID-mediated BAX activation and mitochondrial BAK oligomerization, two downstream events thought to be critical for tBID-induced apoptosis. Glucose deprivation, which impaired the ability of Akt to maintain mitochondrion-hexokinase association, prevented Akt from inhibiting BID-mediated apoptosis. Interestingly, tBID independently elicited dissociation of hexokinases from mitochondria, an effect that was antagonized by activated Akt. Ectopic expression of the amino-terminal half of hexokinase II, which is catalytically active and contains the mitochondrion-binding domain, consistently antagonized tBID-induced apoptosis. These results suggest that Akt inhibits BID-mediated apoptosis downstream of BID cleavage via promotion of mitochondrial hexokinase association and antagonism of tBID-mediated BAX and BAK activation at the mitochondria.


Cancer Cell | 2013

Hexokinase 2 Is Required for Tumor Initiation and Maintenance and Its Systemic Deletion Is Therapeutic in Mouse Models of Cancer

Krushna C. Patra; Qi Wang; Prashanth T. Bhaskar; Luke Miller; Zebin Wang; Will Wheaton; Navdeep S. Chandel; Markku Laakso; William J. Muller; Eric L. Allen; Abhishek K. Jha; Gromoslaw A. Smolen; Michelle F. Clasquin; R.Brooks Robey; Nissim Hay

Accelerated glucose metabolism is a common feature of cancer cells. Hexokinases catalyze the first committed step of glucose metabolism. Hexokinase 2 (HK2) is expressed at high level in cancer cells, but only in a limited number of normal adult tissues. Using Hk2 conditional knockout mice, we showed that HK2 is required for tumor initiation and maintenance in mouse models of KRas-driven lung cancer, and ErbB2-driven breast cancer, despite continued HK1 expression. Similarly, HK2 ablation inhibits the neoplastic phenotype of human lung and breast cancer cells in vitro and in vivo. Systemic Hk2 deletion is therapeutic in mice bearing lung tumors without adverse physiological consequences. Hk2 deletion in lung cancer cells suppressed glucose-derived ribonucleotides and impaired glutamine-derived carbon utilization in anaplerosis.


Journal of Biological Chemistry | 2002

Increased hexokinase activity, of either ectopic or endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death

Jane M. Bryson; Platina E. Coy; Kathrin Gottlob; Nissim Hay; R.Brooks Robey

Glucose (Glc) metabolism protects cells against oxidant injury. By virtue of their central position in both Glc uptake and utilization, hexokinases (HKs) are ideally suited to contribute to these effects. Compatible with this hypothesis, endogenous HK activity correlates inversely with injury susceptibility in individual renal cell types. We recently reported that ectopic HK expression mimics the anti-apoptotic effects of growth factors in cultured fibroblasts, but anti-apoptotic roles for HKs have not been examined in other cell types or in a cellular injury model. We therefore evaluated HK overexpression for the ability to mitigate acute oxidant-induced cell death in an established epithelial cell culture injury model. In parallel, we examined salutary heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) treatment for the ability to 1) increase endogenous HK activity and 2) mimic the protective effects of ectopic HK expression. Both HK overexpression and HB-EGF increased Glc-phosphorylating capacity and metabolism, and these changes were associated with markedly reduced susceptibility to acute oxidant-induced apoptosis. The uniform Glc dependence of these effects suggests an important adaptive role for Glc metabolism, and for HK activity in particular, in the promotion of epithelial cell survival. These findings also support the contention that HKs contribute to the protective effects of growth factors.


Cell Cycle | 2005

Mitochondrial hexokinases: guardians of the mitochondria.

R.Brooks Robey; Nissim Hay

There is accumulating evidence that cell survival and metabolism are inexorably linked. As a majormediator of both the metabolic and anti-apoptotic effects of growth factors, the serine/threonine kinaseAkt (also known as protein kinase B or PKB) is particularly well-suited to coordinate the regulation ofthese interrelated processes. Recent demonstrations that growth factors and Akt require glucose (Glc) toprevent apoptosis and promote cell survival are compatible with this contention, as is a positivecorrelation between Akt-regulated mitochondrial hexokinase (mtHK) association and apoptoticresistance. From a phylogenetic perspective, the ability of Akt to regulate cellular metabolismapparently preceded the capacity to control cell survival, suggesting an evolutionary basis for the Glcdependent anti-apoptotic effects of Akt. We speculate that, somewhere in the course of evolution, themetabolic regulatory function of Akt evolved into an adaptive sensing system involving mtHK thatensures mitochondrial homeostasis, thereby coupling metabolism to cell survival. We also propose thatthis “guardian” function of mtHK may be specifically exploited for therapeutic purposes.


Carcinogenesis | 2015

Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

R.Brooks Robey; Judith Weisz; Nancy B. Kuemmerle; Anna C. Salzberg; Arthur Berg; Dustin G. Brown; Laura L. Kubik; Roberta Palorini; Fahd Al-Mulla; Rabeah Al-Temaimi; Anna Maria Colacci; Chiara Mondello; Jayadev Raju; Jordan Woodrick; A.Ivana Scovassi; Neetu Singh; Monica Vaccari; Rabindra Roy; Stefano Forte; Lorenzo Memeo; Hosni K. Salem; Amedeo Amedei; Roslida A. Hamid; Graeme P. Williams; Leroy Lowe; Joel N. Meyer; Francis L. Martin; William H. Bisson; Ferdinando Chiaradonna; Elizabeth P. Ryan

Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.


Molecular and Cellular Biology | 2009

mTORC1 Hyperactivity Inhibits Serum Deprivation-Induced Apoptosis via Increased Hexokinase II and GLUT1 Expression, Sustained Mcl-1 Expression, and Glycogen Synthase Kinase 3β Inhibition

Prashanth T. Bhaskar; Véronique Nogueira; Krushna C. Patra; Sang Min Jeon; Youngkyu Park; R.Brooks Robey; Nissim Hay

ABSTRACT The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1. mTORC1-mediated increase in hypoxia-inducible factor 1α (HIF1α) abundance, which occurs in the absence of serum in normoxic Tsc2-deficient cells, contributes to these changes. Increased HIF1α abundance in these cells is attributed to both an increased level and the sustained translation of HIF1α mRNA. Sustained glycogen synthase kinase 3β inhibition and Mcl-1 expression also contribute to the apoptotic resistance of Tsc2-deficient cells to serum deprivation. The inhibition of mTORC1 activity by either rapamycin or Raptor knockdown cannot resensitize these cells to serum deprivation-induced apoptosis because of elevated Akt activity that is an indirect consequence of mTORC1 inhibition. However, the increased HIF1α abundance and the maintenance of Mcl-1 protein expression in serum-deprived Tsc2−/− cells are dependent largely on the hyperactive eIF4E in these cells. Consistently, the reduction of eIF4E levels abrogates the resistance of Tsc2−/− cells to serum deprivation-induced apoptosis.


Molecular Biology of the Cell | 2012

AUF1/hnRNP D represses expression of VEGF in macrophages.

Abigail M. Fellows; Mary E. Griffin; Brenda L. Petrella; Lihui Zhong; Fatemeh P. Parvin-Nejad; Roy A. Fava; Peter M. Morganelli; R.Brooks Robey; Ralph C. Nichols

Vascular endothelial growth factor (VEGF) expression is regulated by sequence elements in the 3′ UTR of VEGF mRNA. AUF1/hnRNP D suppresses VEGF 3′ UTR–dependent expression. Peptides with arginine–glycine–glycine motifs derived from AUF1 also suppress VEGF expression.


American Journal of Physiology-renal Physiology | 1999

Regulation of mesangial cell hexokinase activity by PKC and the classic MAPK pathway

R.Brooks Robey; Jianfei Ma; Anna V. P. Santos

Phorbol esters increase glucose (Glc) uptake and utilization in a variety of cell types, and, in some cells, these changes have been attributed to increased Glc phosphorylation and better functional coupling of hexokinases (HKs) to facilitative Glc transporters. Phorbol esters are potent mesangial cell mitogens, but their effects on HK-catalyzed Glc phosphorylation and metabolism are unknown. When examined in murine mesangial cells, active, but not inactive, phorbol esters increased HK activity in a time- and dose-dependent manner. Maximal induction of HK activity at 12-24 h was accompanied by parallel increases in both Glc utilization and lactate production and was blocked by the specific MEK1/2 inhibitor PD-98059 (IC50∼3 μM). This effect involved early activation of protein kinase C (PKC), MEK1/2, and ERK1/2, and the prolonged time course of subsequent HK induction was attributable, in part, to requirements for ongoing gene transcription and de novo protein synthesis. Mesangial cell HK activity thus exhibits novel regulatory behavior involving both PKC and classic MAPK pathway activation, suggesting specific mechanisms whereby PKC activation may influence Glc metabolism.Phorbol esters increase glucose (Glc) uptake and utilization in a variety of cell types, and, in some cells, these changes have been attributed to increased Glc phosphorylation and better functional coupling of hexokinases (HKs) to facilitative Glc transporters. Phorbol esters are potent mesangial cell mitogens, but their effects on HK-catalyzed Glc phosphorylation and metabolism are unknown. When examined in murine mesangial cells, active, but not inactive, phorbol esters increased HK activity in a time- and dose-dependent manner. Maximal induction of HK activity at 12-24 h was accompanied by parallel increases in both Glc utilization and lactate production and was blocked by the specific MEK1/2 inhibitor PD-98059 (IC(50) approximately 3 microM). This effect involved early activation of protein kinase C (PKC), MEK1/2, and ERK1/2, and the prolonged time course of subsequent HK induction was attributable, in part, to requirements for ongoing gene transcription and de novo protein synthesis. Mesangial cell HK activity thus exhibits novel regulatory behavior involving both PKC and classic MAPK pathway activation, suggesting specific mechanisms whereby PKC activation may influence Glc metabolism.


Journal of Biological Chemistry | 2002

Regulation of mesangial cell hexokinase activity and expression by heparin-binding epidermal growth factor-like growth factor: epidermal growth factors and phorbol esters increase glucose metabolism via a common mechanism involving classic mitogen-activated protein kinase pathway activation and induction of hexokinase II expression.

R.Brooks Robey; Jianfei Ma; Anna V. P. Santos; Oscar A. Noboa; Platina E. Coy; Jane M. Bryson

Heparin-binding epidermal growth factor -like growth factor (HB-EGF) expression and hexokinase (HK) activity are increased in various pathologic renal conditions. Although the mitogenic properties of HB-EGF have been well characterized, its effects on glucose (Glc) metabolism have not. We therefore examined the possibility that HB-EGF might regulate HK activity and expression in glomerular mesangial cells, which constitute the principal renal cell type affected by a variety of pathologic conditions. Protein kinase C (PKC)-dependent classic mitogen-activated protein kinase (MAPK) pathway activation has been associated with increased HK activity in this cell type, so we also examined dependence upon these signaling intermediates. HB-EGF (≥10 nm) increased total HK activity over 50% within 12–24 h, an effect mimicked by other EGF receptor agonists, but not by IGF-1 or elevated Glc. EGF receptor and classic MAPK pathway antagonists prevented this increase, as did general inhibitors of gene transcription and protein synthesis. Both HB-EGF and phorbol esters activated the classic MAPK pathway, albeit via PKC-independent and PKC-dependent mechanisms, respectively. Both stimuli were associated with increased HK activity, selectively increased HKII isoform expression, and increased Glc metabolism via both the glycolytic-tricarboxylic acid cycle route and the pentose phosphate pathway. HB-EGF thus constitutes a novel regulator of mesangial cell HK activity and Glc metabolism. HKII is the principal regulated isoform in these cells, as it is in insulin-sensitive peripheral tissues, such as muscle. However, the uniform requirement for classic MAPK pathway activation distinguishes HKII regulation in mesangial cells from that observed in muscle. These findings suggest a novel mechanism whereby growth factors may couple metabolism to glomerular injury.


Hypertension | 2007

Functional Polymorphism of the Anpep Gene Increases Promoter Activity in the Dahl Salt-Resistant Rat

Kumar Kotlo; Douglas E. Hughes; Victoria L. M. Herrera; Nelson Ruiz-Opazo; Robert H. Costa; R.Brooks Robey; Robert S. Danziger

We have reported that aminopeptidase N/CD13, which metabolizes angiotensin III to angiotensin IV, exhibits greater renal tubular expression in the Dahl salt-resistant (SR/Jr) rat than its salt-sensitive (SS/Jr) counterpart. In this work, aminopeptidase N (Anpep) genes from SS/Jr and SR/Jr strains were compared. The coding regions contained only silent single nucleotide polymorphisms between strains. The 5′ flanking regions also contained multiple single nucleotide polymorphisms, which were analyzed by electrophoretic mobility-shift assay using renal epithelial cell (HK-2) nuclear extracts and oligonucleotides corresponding with single nucleotide polymorphism–containing regions. A unique single nucleotide polymorphism 4 nucleotides upstream of a putative CCAAT/enhancer binding protein motif (nucleotides −2256 to −2267) in the 5′ flanking region of the SR/Jr Anpep gene was associated with DNA-protein complex formation, whereas the corresponding sequences in SS rats were not. A chimeric reporter gene containing ≈4.4 Kb of Anpep 5′ flank from the Dahl SR/Jr rat exhibited 2.5- to 3-fold greater expression in HK-2 cells than the corresponding construct derived from the SS strain (P<0.05). Replacing the CCAAT/enhancer binding protein cis-acting element from the SS rat with that from the SR strain increased reporter gene expression by 2.5-fold (P<0.05) and abolished this difference. CCAAT/enhancer binding protein association was confirmed by chromatin immunoprecipitation and correlated with expression, suggesting selection for a functional CCAAT/enhancer binding protein polymorphism in the 5′ flank of Anpep in the Dahl SR/Jr rat. These results highlight a possible association of the Anpep gene with hypertension in Dahl rat and raise the prospect that increased Anpep may play a mechanistic role in adaptation to high salt.

Collaboration


Dive into the R.Brooks Robey's collaboration.

Researchain Logo
Decentralizing Knowledge