Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Bruce Aylward is active.

Publication


Featured researches published by R. Bruce Aylward.


The Lancet | 2007

Protective efficacy of a monovalent oral type 1 poliovirus vaccine: a case-control study

Nicholas C. Grassly; Jay Wenger; Sunita Durrani; Sunil Bahl; Jagadish M. Deshpande; Roland W. Sutter; David L. Heymann; R. Bruce Aylward

BACKGROUND A high-potency monovalent oral type 1 poliovirus vaccine (mOPV1) was developed in 2005 to tackle persistent poliovirus transmission in the last remaining infected countries. Our aim was to assess the efficacy of this vaccine in India. METHODS We estimated the efficacy of mOPV1 used in supplementary immunisation activities from 2076 matched case-control pairs of confirmed cases of poliomyelitis caused by type 1 wild poliovirus and cases of non-polio acute flaccid paralysis in India. The effect of the introduction of mOPV1 on population immunity was calculated on the basis of estimates of vaccination coverage from data for non-polio acute flaccid paralysis. FINDINGS In areas of persistent poliovirus transmission in Uttar Pradesh, the protective efficacy of mOPV1 was estimated to be 30% (95% CI 19-41) per dose against type 1 paralytic disease, compared with 11% (7-14) for the trivalent oral vaccine. 76-82% of children aged 0-23 months were estimated to be protected by vaccination against type 1 poliovirus at the end of 2006, compared with 59% at the end of 2004, before the introduction of mOPV1. INTERPRETATION Under conditions where the efficacy of live-attenuated oral poliovirus vaccines is compromised by a high prevalence of diarrhoea and other infections, a dose of high-potency mOPV1 is almost three times more effective against type 1 poliomyelitis disease than is trivalent vaccine. Achieving high coverage with this new vaccine in areas of persistent poliovirus transmission should substantially improve the probability of rapidly eliminating transmission of the disease.


The Lancet | 2010

Immunogenicity of bivalent types 1 and 3 oral poliovirus vaccine: a randomised, double-blind, controlled trial

Roland W. Sutter; T. Jacob John; Hemant Jain; Sharad Agarkhedkar; Padmasani Venkat Ramanan; Harish Verma; Jagadish M. Deshpande; Ajit Pal Singh; Meghana Sreevatsava; Pradeep Malankar; Anthony Burton; Arani Chatterjee; Hamid Jafari; R. Bruce Aylward

BACKGROUND Poliovirus types 1 and 3 co-circulate in poliomyelitis-endemic countries. We aimed to assess the immunogenicity of a novel bivalent types 1 and 3 oral poliovirus vaccine (bOPV). METHODS We did a randomised, double-blind, controlled trial to assess the superiority of monovalent type 2 OPV (mOPV2), mOPV3, or bOPV over trivalent OPV (tOPV), and the non-inferiority of bivalent vaccine compared with mOPV1 and mOPV3. The study was done at three centres in India between Aug 6, 2008, and Dec 26, 2008. Random allocation was done by permuted blocks of ten. The primary outcome was seroconversion after one monovalent or bivalent vaccine dose compared with a dose of trivalent vaccine at birth. The secondary endpoints were seroconversion after two vaccine doses compared with after two trivalent vaccine doses and cumulative two-dose seroconversion. Parents or guardians and study investigators were masked to treatment allocation. Because of multiple comparisons, we defined p≤0·01 as statistically significant. This trial is registered with Current Controlled Trials, ISRCTN 64725429. RESULTS 900 newborn babies were randomly assigned to one of five vaccine groups (about 180 patients per group); of these 70 (8%) discontinued, leaving 830 (92%) for analysis. After the first dose, seroconversion to poliovirus type 1 was 20% for both mOPV1 (33 of 168) and bOPV (32 of 159) compared with 15% for tOPV (25 of 168; p>0·01), to poliovirus type 2 was 21% (35 of 170) for mOPV2 compared with 25% (42 of 168) for tOPV (p>0·01), and to poliovirus type 3 was 12% (20 of 165) for mOPV3 and 7% (11 of 159) for bOPV compared with 4% (7 of 168) for tOPV (mOPV3 vs tOPV p=0·01; bOPV vs tOPV; p>0·01). Cumulative two-dose seroconversion to poliovirus type 1 was 90% (151 of 168) for mOPV1 and 86% (136 of 159) for bOPV compared with 63% (106 of 168) for tOPV (p<0·0001), to poliovirus type 2 was 90% (153 of 170) for mOPV2 compared with 91% (153 of 168) for tOPV (p>0·01), and to poliovirus type 3 was 84% (138 of 165) for mOPV3 and 74% (117 of 159) for bOPV compared with 52% (87 of 168) for tOPV (p<0·0001). The vaccines were well tolerated. 19 serious adverse events occurred, including one death; however, these events were not attributed to the trial interventions. INTERPRETATION The findings show the superiority of bOPV compared with tOPV, and the non-inferiority of bOPV compared with mOPV1 and mOPV3. FUNDING GAVI Alliance, World Health Organization, and Panacea Biotec.


The New England Journal of Medicine | 2010

Implications of a Circulating Vaccine-Derived Poliovirus in Nigeria

Helen E. Jenkins; R. Bruce Aylward; Alex Gasasira; Christl A. Donnelly; Michael Mwanza; Jukka Corander; Sandra Garnier; Claire Chauvin; Emmanuel Abanida; Muhammad Ali Pate; Festus Adu; Marycelin Baba; Nicholas C. Grassly

BACKGROUND The largest recorded outbreak of a circulating vaccine-derived poliovirus (cVDPV), detected in Nigeria, provides a unique opportunity to analyze the pathogenicity of the virus, the clinical severity of the disease, and the effectiveness of control measures for cVDPVs as compared with wild-type poliovirus (WPV). METHODS We identified cases of acute flaccid paralysis associated with fecal excretion of type 2 cVDPV, type 1 WPV, or type 3 WPV reported in Nigeria through routine surveillance from January 1, 2005, through June 30, 2009. The clinical characteristics of these cases, the clinical attack rates for each virus, and the effectiveness of oral polio vaccines in preventing paralysis from each virus were compared. RESULTS No significant differences were found in the clinical severity of paralysis among the 278 cases of type 2 cVDPV, the 2323 cases of type 1 WPV, and the 1059 cases of type 3 WPV. The estimated average annual clinical attack rates of type 1 WPV, type 2 cVDPV, and type 3 WPV per 100,000 susceptible children under 5 years of age were 6.8 (95% confidence interval [CI], 5.9 to 7.7), 2.7 (95% CI, 1.9 to 3.6), and 4.0 (95% CI, 3.4 to 4.7), respectively. The estimated effectiveness of trivalent oral polio vaccine against paralysis from type 2 cVDPV was 38% (95% CI, 15 to 54%) per dose, which was substantially higher than that against paralysis from type 1 WPV (13%; 95% CI, 8 to 18%), or type 3 WPV (20%; 95% CI, 12 to 26%). The more frequent use of serotype 1 and serotype 3 monovalent oral polio vaccines has resulted in improvements in vaccine-induced population immunity against these serotypes and in declines in immunity to type 2 cVDPV. CONCLUSIONS The attack rate and severity of disease associated with the recent cVDPV identified in Nigeria are similar to those associated with WPV. International planning for the management of the risk of WPV, both before and after eradication, must include scenarios in which equally virulent and pathogenic cVDPVs could emerge.


The New England Journal of Medicine | 2013

Priming after a Fractional Dose of Inactivated Poliovirus Vaccine

Sonia Resik; Alina Tejeda; Roland W. Sutter; Manuel Diaz; Luis Sarmiento; Nilda Alemañi; Gloria Garcia; Magile Fonseca; Lai Heng Hung; Anna-Lea Kahn; Anthony Burton; J. Mauricio Landaverde; R. Bruce Aylward

BACKGROUND To reduce the costs of maintaining a poliovirus immunization base in low-income areas, we assessed the extent of priming immune responses after the administration of inactivated poliovirus vaccine (IPV). METHODS We compared the immunogenicity and reactogenicity of a fractional dose of IPV (one fifth of a full dose) administered intradermally with a full dose administered intramuscularly in Cuban infants at the ages of 4 and 8 months. Blood was collected from infants at the ages of 4 months, 8 months, 8 months 7 days, and 8 months 30 days to assess single-dose seroconversion, single-dose priming of immune responses, and two-dose seroconversion. Specimens were tested with a neutralization assay. RESULTS A total of 320 infants underwent randomization, and 310 infants (96.9%) fulfilled the study requirements. In the group receiving the first fractional dose of IPV, seroconversion to poliovirus types 1, 2, and 3 occurred in 16.6%, 47.1%, and 14.7% of participants, respectively, as compared with 46.6%, 62.8%, and 32.0% in the group receiving the first full dose of IPV (P<0.008 for all comparisons). A priming immune response to poliovirus types 1, 2, and 3 occurred in 90.8%, 94.0%, and 89.6% of participants, respectively, in the group receiving the fractional dose as compared with 97.6%, 98.3%, and 98.1% in the group receiving the full dose (P=0.01 for the comparison with type 3). After the administration of the second dose of IPV in the group receiving fractional doses, cumulative two-dose seroconversion to poliovirus types 1, 2, and 3 occurred in 93.6%, 98.1%, and 93.0% of participants, respectively, as compared with 100.0%, 100.0%, and 99.4% in the group receiving the full dose (P<0.006 for the comparisons of types 1 and 3). The group receiving intradermal injections had the greatest number of adverse events, most of which were minor in intensity and none of which had serious consequences. CONCLUSIONS This evaluation shows that vaccinating infants with a single fractional dose of IPV can induce priming and seroconversion in more than 90% of immunized infants. (Funded by the World Health Organization and the Pan American Health Organization; Australian New Zealand Clinical Trials Registry number, ACTRN12610001046099.).


Vaccine | 2010

Economic analysis of the global polio eradication initiative

Radboud J. Duintjer Tebbens; Mark A. Pallansch; Stephen L. Cochi; Steven Wassilak; Jennifer Linkins; Roland W. Sutter; R. Bruce Aylward; Kimberly M. Thompson

The global polio eradication initiative (GPEI), which started in 1988, represents the single largest, internationally coordinated public health project to date. Completion remains within reach, with type 2 wild polioviruses apparently eradicated since 1999 and fewer than 2000 annual paralytic poliomyelitis cases of wild types 1 and 3 reported since then. This economic analysis of the GPEI reflects the status of the program as of February 2010, including full consideration of post-eradication policies. For the GPEI intervention, we consider the actual pre-eradication experience to date followed by two distinct potential future post-eradication vaccination policies. We estimate GPEI costs based on actual and projected expenditures and poliomyelitis incidence using reported numbers corrected for underreporting and model projections. For the comparator, which assumes only routine vaccination for polio historically and into the future (i.e., no GPEI), we estimate poliomyelitis incidence using a dynamic infection transmission model and costs based on numbers of vaccinated children. Cost-effectiveness ratios for the GPEI vs. only routine vaccination qualify as highly cost-effective based on standard criteria. We estimate incremental net benefits of the GPEI between 1988 and 2035 of approximately 40-50 billion dollars (2008 US dollars; 1988 net present values). Despite the high costs of achieving eradication in low-income countries, low-income countries account for approximately 85% of the total net benefits generated by the GPEI in the base case analysis. The total economic costs saved per prevented paralytic poliomyelitis case drive the incremental net benefits, which become positive even if we estimate the loss in productivity as a result of disability as below the recommended value of one year in average per-capita gross national income per disability-adjusted life year saved. Sensitivity analysis suggests that the finding of positive net benefits of the GPEI remains robust over a wide range of assumptions, and that consideration of the additional net benefits of externalities that occurred during polio campaigns to date, such as the mortality reduction associated with delivery of Vitamin A supplements, significantly increases the net benefits. This study finds a strong economic justification for the GPEI despite the rising costs of the initiative.


Lancet Infectious Diseases | 2012

Immunogenicity of supplemental doses of poliovirus vaccine for children aged 6-9 months in Moradabad, India: a community-based, randomised controlled trial

Concepcion F. Estivariz; Hamid Jafari; Roland W. Sutter; T. Jacob John; Vibhor Jain; Ashutosh Agarwal; Harish Verma; Mark A. Pallansch; Ajit Pal Singh; Sherine Guirguis; Jitendra Awale; Anthony Burton; Sunil Bahl; Arani Chatterjee; R. Bruce Aylward

BACKGROUND The continued presence of polio in northern India poses challenges to the interruption of wild poliovirus transmission and the management of poliovirus risks in the post-eradication era. We aimed to assess the current immunity profile after routine doses of trivalent oral poliovirus vaccine (OPV) and numerous supplemental doses of type-1 monovalent OPV (mOPV1), and compared the effect of five vaccine formulations and dosages on residual immunity gaps. METHODS We did a community-based, randomised controlled trial of healthy infants aged 6-9 months at ten sites in Moradabad, India. Serum neutralising antibody was measured before infants were randomly assigned to a study group and given standard-potency or higher-potency mOPV1, intradermal fractional-dose inactivated poliovirus vaccine (IPV, GlaxoSmithKline), or intramuscular full-dose IPV from two different manufacturers (GlaxoSmithKline or Panacea). Follow-up sera were taken at days 7 and 28. Our primary endpoint was an increase of more than four times in antibody titres. We did analyses by per-protocol in children with a blood sample available before, and 28 days after, receiving study vaccine (or who completed study procedures). This trial is registered with Current Controlled Trials, number ISRCTN90744784. FINDINGS Of 1002 children enrolled, 869 (87%) completed study procedures (ie, blood sample available at day 0 and day 28). At baseline, 862 (99%), 625 (72%), and 418 (48%) had detectable antibodies to poliovirus types 1, 2, and 3, respectively. In children who were type-1 seropositive, an increase of more than four times in antibody titre was detected 28 days after they were given standard-potency mOPV1 (5/13 [38%]), higher-potency mOPV1 (6/21 [29%]), intradermal IPV (9/16 [56%]), GlaxoSmithKline intramuscular IPV (19/22 [86%]), and Panacea intramuscular IPV (11/13 [85%]). In those who were type-2 seronegative, 42 (100%) of 42 seroconverted after GlaxoSmithKline intramuscular IPV, and 24 (59%) of 41 after intradermal IPV (p<0·0001). 87 (90%) of 97 infants who were type-3 seronegative seroconverted after intramuscular IPV, and 21 (36%) of 49 after intradermal IPV (p<0·0001). INTERPRETATION Supplemental mOPV1 resulted in almost total seroprevalence against poliovirus type 1, which is consistent with recent absence of poliomyelitis cases; whereas seroprevalence against types 2 and 3 was expected for routine vaccination histories. The immunogenicity of IPV produced in India (Panacea) was similar to that of an internationally manufactured IPV (GSK). Intradermal IPV was less immunogenic.


Science | 2014

Efficacy of inactivated poliovirus vaccine in India

Hamid Jafari; Jagadish M. Deshpande; Roland W. Sutter; Sunil Bahl; Harish Verma; Mohammad Ahmad; Abhishek Kunwar; Rakesh Vishwakarma; Ashutosh Agarwal; Shilpi Jain; Concepcion F. Estivariz; Raman Sethi; Natalie A. Molodecky; Nicholas C. Grassly; Mark A. Pallansch; Arani Chatterjee; R. Bruce Aylward

Two vaccines together are better than one alone Polio is proving difficult to eradicate. Making the choice between administering a live attenuated vaccine orally (Sabin) or an inactivated vaccine (Salk) by injection has been highly controversial. Patients prefer the Sabin vaccine, but it requires many doses to offer immunity. Jafari et al. tested the two vaccines together in northern India. The injected vaccine significantly reduced virus shedding and boosted intestinal mucosal immunity in children already given the oral vaccine. Thus, using both vaccines could help speed the eventual global demise of polio. Science, this issue p. 922 Controversy over vaccine choice for polio eradication can be reconciled by effective combined use. Inactivated poliovirus vaccine (IPV) is efficacious against paralytic disease, but its effect on mucosal immunity is debated. We assessed the efficacy of IPV in boosting mucosal immunity. Participants received IPV, bivalent 1 and 3 oral poliovirus vaccine (bOPV), or no vaccine. A bOPV challenge was administered 4 weeks later, and excretion was assessed 3, 7, and 14 days later. Nine hundred and fifty-four participants completed the study. Any fecal shedding of poliovirus type 1 was 8.8, 9.1, and 13.5% in the IPV group and 14.4, 24.1, and 52.4% in the control group by 6- to 11-month, 5-year, and 10-year groups, respectively (IPV versus control: Fisher’s exact test P < 0.001). IPV reduced excretion for poliovirus types 1 and 3 between 38.9 and 74.2% and 52.8 and 75.7%, respectively. Thus, IPV in OPV-vaccinated individuals boosts intestinal mucosal immunity.


American Journal of Public Health | 2008

The Risks, Costs, and Benefits of Possible Future Global Policies for Managing Polioviruses

Kimberly M. Thompson; Radboud J. Duintjer Tebbens; Mark A. Pallansch; Olen M. Kew; Roland W. Sutter; R. Bruce Aylward; Margaret Watkins; Howard E. Gary; James Alexander; Hamid Jafari; Stephen L. Cochi

OBJECTIVES We assessed the costs, risks, and benefits of possible future major policy decisions on vaccination, surveillance, response plans, and containment following global eradication of wild polioviruses. METHODS We developed a decision analytic model to estimate the incremental cost-effectiveness ratios and net benefits of risk management options for polio for the 20-year period and stratified the world according to income level to capture important variability between nations. RESULTS For low-, lower-middle-, and upper-middle-income groups currently using oral poliovirus vaccine (OPV), we found that after successful eradication of wild polioviruses, OPV cessation would save both costs and lives when compared with continued use of OPV without supplemental immunization activities. We found cost-effectiveness ratios for switching from OPV to inactivated poliovirus vaccine to be higher (i.e., less desirable) than other health investment opportunities, depending on the actual inactivated poliovirus vaccine costs and assumptions about whether supplemental immunization activities with OPV would continue. CONCLUSIONS Eradication promises billions of dollars of net benefits, although global health policy leaders face difficult choices about future policies. Until successful eradication and coordination of posteradication policies, health authorities should continue routine polio vaccination and supplemental immunization activities.


Clinical Infectious Diseases | 1998

Outbreak of Paralytic Poliomyelitis in Albania, 1996: High Attack Rate Among Adults and Apparent Interruption of Transmission Following Nationwide Mass Vaccination

D. Rebecca Prevots; Marta Luisa Ciofi degli Atti; A Sallabanda; Eleni Diamante; R. Bruce Aylward; Eduard Kakariqqi; Lucia Fiore; Alban Ylli; Harrie van der Avoort; Roland W. Sutter; Alberto E. Tozzi; Pietro Panei; Nicola Schinaia; Domenico Genovese; George Oblapenko; Donato Greco; Steven G. F. Wassilak

After >10 years without detection of any cases of wild virus-associated poliomyelitis, a large outbreak of poliomyelitis occurred in Albania in 1996. A total of 138 paralytic cases occurred, of which 16 (12%) were fatal. The outbreak was due to wild poliovirus type 1, isolated from 69 cases. An attack rate of 10 per 100,000 population was observed among adults aged 19-25 years who were born during a time of declining wild poliovirus circulation and had been vaccinated with two doses of monovalent oral poliovirus vaccines (OPVs) that may have been exposed to ambient temperatures for prolonged periods. Control of the epidemic was achieved by two rounds of mass vaccination with trivalent oral poliovirus vaccine targeted to persons aged 0-50 years. This outbreak underscores the ongoing threat of importation of wild poliovirus into European countries, the importance of delivering potent vaccine through an adequate cold chain, and the effectiveness of national OPV mass vaccination campaigns for outbreak control.


The Journal of Infectious Diseases | 2009

Mucosal Immunity after Vaccination with Monovalent and Trivalent Oral Poliovirus Vaccine in India

Nicholas C. Grassly; Hamid Jafari; Sunil Bahl; Sunita Durrani; Jay Wenger; Roland W. Sutter; R. Bruce Aylward

BACKGROUND Persistent wild-poliovirus transmission, particularly in India, has raised questions about the degree of mucosal immunity induced by oral poliovirus vaccine (OPV) in tropical countries. METHODS Excretion of vaccine poliovirus after challenge with OPV was measured in stool samples collected from children identified by the acute flaccid paralysis surveillance program in India during 2005-2007. The effectiveness of trivalent and monovalent OPV against excretion of each poliovirus type was estimated. RESULTS Vaccine poliovirus was isolated from 4994 (5.2%) of 96,641 children with 2 stool samples. The relative odds of excreting challenge poliovirus among children with 5 reported previous doses of trivalent OPV compared with 0 previous doses was 0.24 (95% confidence interval [CI], 0.12-0.45), 0.08 (95% CI, 0.04-0.14), and 0.40 (95% CI, 0.19-0.85) for serotypes 1, 2, and 3, respectively, but the relative odds increased to 0.62 (95% CI, 0.44-0.88), 0.44 (95% CI, 0.20-0.99), and 0.66 (95% CI, 0.41-1.06), respectively, in the northern states of Uttar Pradesh and Bihar. In these 2 states, the relative odds of excretion of serotype 1 was 0.32 (95% CI, 0.26-0.41) after 5 doses of type 1 monovalent OPV. CONCLUSIONS The mucosal immunity induced by OPV in India varies by location, serotype, and vaccine formulation. These findings have implications for global eradication and the potential role played by inactivated vaccine in this setting.

Collaboration


Dive into the R. Bruce Aylward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen L. Cochi

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Hamid Jafari

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil Bahl

World Health Organization

View shared research outputs
Top Co-Authors

Avatar

Mark A. Pallansch

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Olen M. Kew

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge