Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Buehler is active.

Publication


Featured researches published by R. Buehler.


Science | 2014

Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources

M. Ackermann; M. Ajello; A. Albert; L. Baldini; J. Ballet; D. Bastieri; R. Bellazzini; E. Bissaldi; R. D. Blandford; E. D. Bloom; E. Bottacini; T. J. Brandt; J. Bregeon; P. Bruel; R. Buehler; S. Buson; G. A. Caliandro; R. A. Cameron; M. Caragiulo; Patrizia A. Caraveo; E. C. Ferrara; A. K. Harding; E. Hays; J. S. Perkins; D. J. Thompson

Gamma-ray novas may be garden variety When astronomers detected gamma rays from the nova V407 Cyg, an explosive mass transfer from a red giant onto a white dwarf, they found it surprising enough. They blamed the rays on strong stellar winds enabling particle acceleration. Now, the Fermi-LAT Collaboration has observed gamma rays from three more novas, all lacking the strong winds. Although the three sources vary slightly in nature, none is particularly unusual. If all novas emit gamma rays, then astronomers would expect to see the same number of novas that they did in fact see within a 5-kpc distance over 5 years. Science, this issue p. 554 Three classical novae exhibit unexpected high-energy particle acceleration and may represent the norm for that object class. A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ-ray–detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft-spectrum transient γ-ray sources detected over 2- to 3-week durations. The γ-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ-ray sources.


The Astrophysical Journal | 2012

FERMI LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS

M. Ackermann; M. Ajello; A. Allafort; L. Baldini; J. Ballet; G. Barbiellini; D. Bastieri; K. Bechtol; R. Bellazzini; B. Berenji; R. D. Blandford; Elliott D. Bloom; E. Bonamente; A. W. Borgland; E. Bottacini; T. J. Brandt; J. Bregeon; M. Brigida; P. Bruel; R. Buehler; G. Busetto; S. Buson; G. A. Caliandro; R. A. Cameron; P. A. Caraveo; E. C. Ferrara; A. K. Harding; R. Nemmen; D. J. Thompson; Eleonora Troja

We report an analysis of the interstellar γ -ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within ∼300 pc from the solar system. The γ -ray emission produced by interactions of cosmic rays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained γ -ray emissivities above 250 MeV are (5.9 ± 0.1stat +0.9 −1.0sys) × 10−27 photons s−1 sr−1 H-atom−1, (10.2 ± 0.4stat +1.2 −1.7sys) × 10−27 photons s−1 sr−1 H-atom−1, and (9.1 ± 0.3stat +1.5 −0.6sys) × 10−27 photons s−1 sr−1 H-atom−1 for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively. Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by ∼20% in the neighborhood of the solar system, even if we consider systematic uncertainties. The molecular mass calibrating ratio, XCO = N(H2)/WCO, is found to be (0.96 ± 0.06stat +0.15 −0.12sys) × 1020 H2-molecule cm−2 (K km s−1)−1, (0.99 ± 0.08stat +0.18 −0.10sys) × 1020 H2-molecule cm−2 (K km s−1)−1, and (0.63 ± 0.02stat +0.09 −0.07sys) × 1020 H2-molecule cm−2 (K km s−1)−1 for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively, suggesting a variation of XCO in the vicinity of the solar system. From the obtained values of XCO, the masses of molecular gas traced by WCO in the Chamaeleon, R CrA, and Cepheus and Polaris flare regions are estimated to be ∼5 × 103M , ∼103M , and ∼3.3 × 104M , respectively. A comparable amount of gas not traced well by standard Hi and CO surveys is found in the regions investigated.We report an analysis of the interstellar γ-ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within ∼ 300 pc from the solar system. The γ-ray emission produced by interactions of cosmicrays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained γ-ray emissivities above 250 MeV are (5.9 ± 0.1stat +0.9 −1.0sys) × 10 −27 photons s−1 sr−1 H-atom−1, (10.2 ± 0.4stat +1.2 −1.7sys) × 10 −27 photons s−1 sr−1 H-atom−1, and (9.1 ± 0.3stat +1.5 −0.6sys) × 10 −27 photons s−1 sr−1 H-atom−1 for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively. Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by ∼ 20 % in the neighborhood of the solar system, even if we consider systematic uncertainties. The molecular mass calibrating ratio, XCO = N(H2)/WCO, is found to be (0.96 ± 0.06stat +0.15 −0.12sys) ×10 20 H2-molecule cm −2 (K km s−1)−1, (0.99 ± 0.08stat +0.18 −0.10sys) ×10 20 H2-molecule cm −2 (K km s−1)−1, and (0.63 ± 0.02stat +0.09 −0.07sys) ×10 20 H2-molecule cm −2 (K km s−1)−1 for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively, suggesting a variation of XCO in the vicinity of the solar system. From the obtained values of XCO, the masses of molecular gas traced by WCO in the Chamaeleon, R CrA, and Cepheus and Polaris flare regions are estimated to be ∼ 5×103 M⊙, ∼ 10 3 M⊙, and ∼ 3.3×10 4 M⊙, respectively. A comparable amount of gas not traced well by standard H I and CO surveys is found in the regions investigated. University of California at Santa Cruz, Santa Cruz, CA 95064, USA Institut für Astround Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria Department of Physics, University of Washington, Seattle, WA 98195-1560, USA NYCB Real-Time Computing Inc., Lattingtown, NY 11560-1025, USA Department of Chemistry and Physics, Purdue University Calumet, Hammond, IN 46323-2094, USA Institut für Theoretische Physik and Astrophysik, Universität Würzburg, D-97074 Würzburg, Germany Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy INTEGRAL Science Data Centre, CH-1290 Versoix, Switzerland NASA Postdoctoral Program Fellow, USA Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Roma, Italy Institut Universitaire de France, France


Physical Review D | 2017

Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope

S. Abdollahi; M. Ackermann; M. Ajello; W. B. Atwood; L. Baldini; G. Barbiellini; D. Bastieri; R. Bellazzini; E. D. Bloom; R. Bonino; T. Brandt; J. Bregeon; P. Bruel; R. Buehler; R. A. Cameron; R. Caputo; M. Caragiulo; Daniel Castro; E. Cavazzuti; C. Cecchi; A. Chekhtman; S. Ciprini; J. Cohen-Tanugi; F. Costanza; A. Cuoco; S. Cutini; F. D'Ammando; F. de Palma; R. Desiante; S. W. Digel

We present a measurement of the cosmic-ray electron+positron spectrum between 7 GeV and 2 TeV performed with almost seven years of data collected with the Fermi Large Area Telescope. We find that the spectrum is well fit by a broken power law with a break energy at about 50 GeV. Above 50 GeV, the spectrum is well described by a single power law with a spectral index of 3.07 ± 0.02 (stat+syst) ± 0.04 (energy measurement). An exponential cutoff lower than 1.8 TeV is excluded at 95% CL. PACS numbers: 98.70.Sa, 96.50.sb, 95.85.Ry, 95.55.Vj


The Astrophysical Journal | 2015

Characterization of the Inner Knot of the Crab: the Site of the Gamma-ray Flares?

Alexander R. Rudy; D. Horns; Andrea DeLuca; Jeffery J. Kolodziejczak; Allyn F. Tennant; Yajie Yuan; R. Buehler; Jonathon Arons; R. D. Blandford; Patrizia A. Caraveo; Enrico Costa; Stephan Funk; E. Hays; Andrei P. Lobanov; Claire E. Max; M. Mayer; R. P. Mignani; Stephen L. O’Dell; Roger W. Romani; Marco Tavani; Martin C. Weisskopf

One of the most intriguing recent discoveries has been the detection of powerful gamma-ray flares from the Crab Nebula. Such events, with a recurrence time of about once per year, can be so dramatic to make the system the brightest source in the gammaray sky as occurred, e.g. in April 2011. These flares challenge our understanding of how pulsar wind nebulae work and defy current astrophysical models for particle acceleration. We present here our study of the inner knot located within a fraction of an arcsecond from the pulsar with the aim of characterizing the feature and asking if this might be the site of the origin of the gamma-ray flares. We took data using Keck, HST, and Chandra obtained as part of our multiwavelength campaign to identify the source of the enigmatic flares. We set an upper limit as to the gamma-ray flux from the knot. We also find that the dimensions, surface brightness, flux, etc. of the optical and infrared knot are all correlated with distance from the pulsar. This distance, in turn, varies with time. In addition to this most thorough characterization of the inner knots properties, we examine the hypothesis that the knot may be the site of the flares by examining the knot separation versus the Fermi/LAT gamma-ray flux. Finally, as part of this research, we make use of a new approach employing singular value decomposition (SVD) for analyzing time series of images and compare the approach to more traditional methods. Our conclusions are only refined but not impacted by using the new approach.


The Astrophysical Journal | 2013

Rapid gamma-ray flux variability during the 2013 March Crab Nebula flare

M. Mayer; R. Buehler; E. Hays; C. C. Cheung; M. Dutka; J. E. Grove; M. Kerr; R. Ojha

We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5?hr. The combined photon flux above 100?MeV from the pulsar and its nebula reached a peak value of (12.5 ? 0.8) ? 10?6?cm?2?s?1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies a ~20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.


The Astrophysical Journal | 2017

Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares

M. Ackermann; A. Allafort; L. Baldini; G. Barbiellini; D. Bastieri; R. Bellazzini; E. Bissaldi; R. Bonino; E. Bottacini; J. Bregeon; P. Bruel; R. Buehler; R. A. Cameron; M. Caragiulo; P. A. Caraveo; E. Cavazzuti; C. Cecchi; E. Charles; S. Ciprini; F. Costanza; S. Cutini; F. D'Ammando; F. de Palma; R. Desiante; S. W. Digel; N. Di Lalla; M. Di Mauro; L. Di Venere; P. S. Drell; C. Favuzzi

We report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO. All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwave spectra. We also provide a comparison of the BTL flares detected by Fermi-LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.


The Astrophysical Journal | 2010

Discovery of a GeV Blazar Shining Through the Galactic Plane

J. Vandenbroucke; R. Buehler; M. Ajello; K. Bechtol; A. Bellini; M. Bolte; C. C. Cheung; F. Civano; D. Donato; L. Fuhrmann; S. Funk; S. E. Healey; A. B. Hill; Christian Knigge; G. M. Madejski; Roger W. Romani; M. Santander-Garcia; M. S. Shaw; D. Steeghs; Manuel A. P. Torres; A. Van Etten; Kurtis A. Williams

The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = -1.2{sup o}) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. We report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck LRIS observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray obsorption, and multi-band variability indicate that this new Gev source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width > 5 {angstrom}, this blazar belongs in the flat-spectrum radio quasar category.


Monthly Notices of the Royal Astronomical Society | 2015

The variability of the Crab nebula in radio: no radio counterpart to gamma-ray flares

Michael F. Bietenholz; Yajie Yuan; R. Buehler; A. P. Lobanov; R. D. Blandford

We present new Jansky Very Large Array (VLA) radio images of the Crab Nebula at 5.5 GHz, taken at two epochs separated by 6 days about two months after a gamma-ray flare in 2012 July. We find no significant change in the Crabs radio emission localized to a region of <2 light-months in radius, either over the 6-day interval between our present observations or between the present observations and ones from 2001. Any radio counterpart to the flare has a radio luminosity of <~


Space Science Reviews | 2017

Modelling Jets, Tori and Flares in Pulsar Wind Nebulae

Oliver Porth; R. Buehler; B. Olmi; Serguei S. Komissarov; Astrid Lamberts; E. Amato; Yajie Yuan; Alexander Rudy

2 \times 10^{-4}


Astronomy and Astrophysics | 2014

Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

A. Schulz; M. Ackermann; R. Buehler; M. Mayer; S. Klepser

times that of the nebula. Comparing our images to one from 2001, we do however find changes in radio brightness, up to 10% in amplitude, which occur on decade timescales throughout the nebula. The morphology of the changes is complex suggesting both filamentary and knotty structures. The variability is stronger, and the timescales likely somewhat shorter, nearer the centre of the nebula. We further find that even with the excellent uv~coverage and signal-to-noise of the VLA, deconvolution errors are much larger than the noise, being up to 1.2% of peak brightness of the nebula in this particular case.

Collaboration


Dive into the R. Buehler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Baldini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

E. Hays

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

R. A. Cameron

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Bellazzini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

P. Bruel

École Polytechnique

View shared research outputs
Top Co-Authors

Avatar

S. Funk

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Allyn F. Tennant

Marshall Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge