Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. C. Hartman is active.

Publication


Featured researches published by R. C. Hartman.


Astrophysical Journal Supplement Series | 1995

The Third EGRET Catalog of High-Energy Gamma-Ray Sources

R. C. Hartman; David L. Bertsch; S. D. Bloom; Andrew W. Chen; Philip Deines-Jones; Joseph Andre Esposito; C. E. Fichtel; D. P. Friedlander; Stanley D. Hunter; L. M. McDonald; P. Sreekumar; D. J. Thompson; B. B. Jones; Y. C. Lin; P. F. Michelson; P. L. Nolan; W. F. Tompkins; G. Kanbach; H. A. Mayer-Hasselwander; A. Mücke; Martin Pohl; O. Reimer; D. A. Kniffen; Edward J. Schneid; C. von Montigny; R. Mukherjee; B. L. Dingus

The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E > 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement, that do not appear in this catalog.


The Astrophysical Journal | 1997

EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane

Stanley D. Hunter; D. L. Bertsch; Jennifer R. Catelli; T. M. Dame; Seth W. Digel; B. L. Dingus; Joseph Andre Esposito; C. E. Fichtel; R. C. Hartman; G. Kanbach; D. A. Kniffen; Y. C. Lin; H. A. Mayer-Hasselwander; P. F. Michelson; C. von Montigny; R. Mukherjee; P. L. Nolan; Edward J. Schneid; P. Sreekumar; P. Thaddeus; D. J. Thompson

The high-energy diffuse gamma-ray emission from the Galactic plane, |b| ≤ 10°, is studied using observations from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The spatial distribution of the diffuse emission has been determined for four broad energy ranges after removing the contribution from point sources detected with greater than 5 σ significance. The longitude and latitude distributions of the intensity, averaged over 4° latitude ranges and 10° longitude ranges, respectively, are shown for the four energy ranges. Spectra of the diffuse emission in 11 energy bands, covering the energy range 30 MeV to 30 GeV, were determined for 10° × 4° (l × b) bins after correcting for the finite EGRET angular resolution. The average spectrum from the direction of the inner Galaxy is shown for 29 energy bands, covering the energy range 30 MeV to 50 GeV. At latitudes |b| > 2°, corresponding to gamma rays emitted within about 3 kpc of the Sun, there is no significant variation in the spectra with Galactic longitude. Comparison of the spectra from the Galactic plane (|b| < 2°) reveals no significant variation with Galactic longitude below about 4 GeV, which suggests that the cosmic-ray electron to proton ratio does not vary significantly throughout the Galaxy. Above 4 GeV, however, there is weak (about 3 σ) evidence for variation of the Galactic plane (|b| < 2°) spectrum with longitude. The spectrum is softer in the direction of the outer Galaxy by about E compared to the spectrum from the inner Galaxy. This variation of the diffuse gamma-ray emission hints at a variation of the cosmic-ray proton spectrum with Galactic radius, which might be expected if cosmic rays are accelerated primarily in the inner Galaxy and then propagate to the outer Galaxy or if the high-energy cosmic rays are confined less well in the outer Galaxy. The spatial and spectral distributions of the diffuse emission are compared with a model calculation of this emission based on dynamic balance and realistic interstellar matter and photon distributions. The spatial comparison is used to establish the value of the molecular mass calibrating ratio N(H2)/WCO and the cosmic-ray/matter coupling scale r0, which are the only adjustable parameters of the model. Comparisons with the observations indicates N(H2)/WCO = (1.56 ± 0.05) × 1020 mol cm-2 (K km s-1)-1 and r0 = (1.76 ± 0.2) kpc. The spatial agreement between this model and the observation is very good. However, above about 1 GeV the integral intensity predicted by the model is about 60% less than the observed intensity. Although the explanation of this excess is unclear, uncertainties in the neutral pion production function or variations in the cosmic-ray spectrum with Galactic radius may partially account for the underprediction. A small medium-latitude (2° < |b| < 10°) excess in the direction of the inner Galaxy exists and may indicate that the low-energy photon density used in the model is too low.


The Astrophysical Journal | 1998

EGRET observations of the extragalactic gamma-ray emission

P. Sreekumar; D. L. Bertsch; B. L. Dingus; Joseph Andre Esposito; C. E. Fichtel; R. C. Hartman; Stanley D. Hunter; G. Kanbach; D. A. Kniffen; Y. C. Lin; H. A. Mayer-Hasselwander; P. F. Michelson; C. von Montigny; A. Mücke; R. Mukherjee; P. L. Nolan; Martin Pohl; O. Reimer; Edward J. Schneid; J. G. Stacy; Floyd W. Stecker; D. J. Thompson; Thomas D. Willis

The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced. The analysis indicates that the extragalactic emission is well described by a power-law photon spectrum with an index of -(2.10 ± 0.03) in the 30 MeV to 100 GeV energy range. No large-scale spatial anisotropy or changes in the energy spectrum are observed in the deduced extragalactic emission. The most likely explanation for the origin of this extragalactic high-energy gamma-ray emission is that it arises primarily from unresolved gamma-ray-emitting blazars.


Astrophysical Journal Supplement Series | 1993

Calibration of the Energetic Gamma-Ray Experiment Telescope (EGRET) for the Compton Gamma-Ray Observatory

D. J. Thompson; D. L. Bertsch; C. E. Fichtel; R. C. Hartman; R. Hofstadter; E.B. Hughes; Stanley D. Hunter; B. W. Hughlock; G. Kanbach; D. A. Kniffen; Y. C. Lin; J. R. Mattox; H. A. Mayer-Hasselwander; C. von Montigny; P. L. Nolan; H. I. Nel; K. Pinkau; H. Rothermel; Edward J. Schneid; M. Sommer; Parameswaran Sreekumar; D. Tieger; A. H. Walker

Calibration of the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory involves simulation, experimental calibration, and verification in flight. The principal properties of the instrument which have been determined as a function of energy and angle are the effective area, the angular resolution (point spread function), and the energy resolution (dispersion)


The Astrophysical Journal | 1997

EGRET Observations of High-Energy Gamma-Ray Emission from Blazars: An Update

R. Mukherjee; D. L. Bertsch; S. D. Bloom; B. L. Dingus; Joseph Andre Esposito; C. E. Fichtel; R. C. Hartman; Stanley D. Hunter; G. Kanbach; D. A. Kniffen; Y. C. Lin; H. A. Mayer-Hasselwander; L. M. McDonald; P. F. Michelson; C. von Montigny; A. Mücke; P. L. Nolan; Martin Pohl; O. Reimer; Edward J. Schneid; P. Sreekumar; D. J. Thompson

The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) has so far detected 51 blazars during phases 1, 2, and 3, and cycle 4 of the CGRO mission. We present here a summary of these observations, including flux variations and spectra of the blazars. The high luminosities and time variations seen in the gamma-ray data indicate that gamma rays are an important component of the relativistic jet thought to characterize blazars.


The Astrophysical Journal | 1975

High-energy gamma-ray results from the second small astronomy satellite

C. E. Fichtel; R. C. Hartman; D. A. Kniffen; D. J. Thompson; H. Ogelman; M. E. Ozel; T. Tumer; G. F. Bignami

Data are reported which were obtained with a high-energy (exceeding 35 Mev) gamma-ray telescope flown on the second Small Astronomy Satellite (SAS-2). The high-energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and its longitudinal and latitudinal distributions appear to be generally correlated with galactic structural features, particularly with arm segments. Principally on the basis of its angular distribution and magnitude, it is suggested that this radiation results primarily from cosmic-ray interactions with interstellar matter. A uniform celestial gamma radiation appears to have been detected; the form of its differential spectrum over the energy range from about 35 to 170 MeV is obtained, and a cosmological origin is suggested for this radiation. In addition to the general galactic emission, high-energy gamma radiation was detected from the Crab Nebula, Vela X, a general region toward the galactic center, and a region located a few degrees north of the galactic plane. Upper limits to the high-energy gamma ray fluxes are set for a number of localized sources.


The Astrophysical Journal | 1998

Multiwavelength Observations of a Dramatic High-Energy Flare in the Blazar 3C 279

Ann E. Wehrle; E. Pian; Claudia M. Urry; L. Maraschi; I. M. McHardy; A. J. Lawson; G. Ghisellini; R. C. Hartman; Greg M. Madejski; F. Makino; Alan P. Marscher; S. J. Wagner; J. R. Webb; G. S. Aldering; Margo F. Aller; Hugh D. Aller; Dana E. Backman; T. J. Balonek; P. Boltwood; Jerry T. Bonnell; J. Caplinger; A. Celotti; W. Collmar; J. Dalton; A. Drucker; R. Falomo; C. E. Fichtel; Wolfram Freudling; Walter Kieran Gear; N. Gonzales

The blazar 3C 279, one of the brightest identified extragalactic objects in the γ-ray sky, underwent a large (factor of ~10 in amplitude) flare in γ-rays toward the end of a 3 week pointing by Compton Gamma Ray Observatory (CGRO), in 1996 January-February. The flare peak represents the highest γ-ray intensity ever recorded for this object. During the high state, extremely rapid γ-ray variability was seen, including an increase of a factor of 2.6 in ~8 hr, which strengthens the case for relativistic beaming. Coordinated multifrequency observations were carried out with Rossi X-Ray Timing Explorer (RXTE), Advanced Satellite for Cosmology and Astrophysics (ASCA; or, Astro-D), Roentgen Satellite (ROSAT), and International Ultraviolet Explorer (IUE) and from many ground-based observatories, covering most accessible wavelengths. The well-sampled, simultaneous RXTE light curve shows an outburst of lower amplitude (factor of 3) well correlated with the γ-ray flare without any lag larger than the temporal resolution of ~1 day. The optical-UV light curves, which are not well sampled during the high-energy flare, exhibit more modest variations (factor of ~2) and a lower degree of correlation. The flux at millimetric wavelengths was near a historical maximum during the γ-ray flare peak, and there is a suggestion of a correlated decay. We present simultaneous spectral energy distributions of 3C 279 prior to and near to the flare peak. The γ-rays vary by more than the square of the observed IR-optical flux change, which poses some problems for specific blazar emission models. The synchrotron self-Compton (SSC) model would require that the largest synchrotron variability occurred in the mostly unobserved submillimeter/far-infrared region. Alternatively, a large variation in the external photon field could occur over a timescale of a few days. This occurs naturally in the mirror model, wherein the flaring region in the jet photoionizes nearby broad emission line clouds, which, in turn, provide soft external photons that are Comptonized to γ-ray energies.


Astrophysical Journal Supplement Series | 1994

The first energetic gamma-ray experiment telescope (EGRET) source catalog

C. E. Fichtel; D. L. Bertsch; J. Chiang; B. L. Dingus; Joseph Andre Esposito; J. M. Fierro; R. C. Hartman; Stanley D. Hunter; G. Kanbach; D. A. Kniffen

In this catalog the results related to high-energy gamma-ray sources obtained from the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory are summarized for the period from 1991 April 22 to 1992 November 17, called phase 1. This phase of the Compton Observatory mission was devoted to an all-sky survey. Tables are included for the following EGRET results: solar flares with detected gamma radiation; pulsars; sources with absolute value of b is less than 10 deg, gamma-ray bursts; normal galaxies; clusters of galaxies; positive detections of radio-loud quasars and BL Lac objects; marginal detections of radio-loud quasars and BL Lac objects; upper limits for radio-loud quasars and BL Lac objects; upper limits for Seyfert galaxies and selected radio-quiet quasars, and other sources with absolute value of b is greater than or equal to 10 deg the Galactic plane. There is also a table relating the dates of the observations to the Compton Observatory viewing period numbers to assist in referencing the observations.


The Astrophysical Journal | 1997

The Identification of EGRET Sources with Flat-Spectrum Radio Sources

John Richard Mattox; Jonathan F. Schachter; L. A. Molnar; R. C. Hartman; Alok Ranjan Patnaik

We present a method to assess the reliability of the identification of EGRET sources with extragalactic radio sources. We verify that EGRET is detecting the blazar class of active galactic nuclei (AGNs). However, many published identifications are found to be questionable. We provide a table of 42 blazars that we expect to be robust identifications of EGRET sources. This includes one previously unidentified EGRET source, the lensed AGN PKS 1830-210, near the direction of the Galactic center. We provide the best available positions for 16 more radio sources that are also potential identifications for previously unidentified EGRET sources. All high Galactic latitude EGRET sources (|b| > 3?) that demonstrate significant variability can be identified with flat-spectrum radio sources. This suggests that EGRET is not detecting any type of AGN other than blazars. This identification method has been used to establish with 99.998% confidence that the peak ?-ray flux of a blazar is correlated with its average 5 GHz radio flux. An even better correlation is seen between ?-ray flux and the 2.29 GHz flux density measured with VLBI at the base of the radio jet. Also, using high-confidence identifications, we find that the radio sources identified with EGRET sources have greater correlated VLBI flux densities than the parent population of flat radio spectrum sources.


The Astrophysical Journal | 2001

Multiepoch multiwavelength spectra and models for blazar 3C 279

R. C. Hartman; M. Böttcher; G. Aldering; Hugh D. Aller; Margo F. Aller; Dana E. Backman; Thomas J. Balonek; D. L. Bertsch; S. D. Bloom; H. Bock; Paul Boltwood; Michael T. Carini; W. Collmar; G. de Francesco; Elizabeth Colleen Ferrara; Wolfram Freudling; Walter Kieran Gear; Patrick B. Hall; J. Heidt; Philip A. Hughes; Stanley D. Hunter; Shardha Jogee; W. N. Johnson; G. Kanbach; S. Katajainen; M. Kidger; Tsuneo Kii; M. Koskimies; A. Kraus; H. Kubo

Of the blazars detected by EGRET in GeV γ-rays, 3C 279 is not only the best observed by EGRET but also one of the best monitored at lower frequencies. We have assembled 11 spectra, from GHz radio through GeV γ-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial γ-ray contribution to the total luminosity of the object; in a high state, the γ-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and γ-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton plus external Compton γ-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low γ-ray intensity.

Collaboration


Dive into the R. C. Hartman's collaboration.

Top Co-Authors

Avatar

D. J. Thompson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

C. E. Fichtel

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Stanley D. Hunter

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. L. Bertsch

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. von Montigny

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

P. L. Nolan

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge