R. C. Issac
University of Strathclyde
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. C. Issac.
Journal of Applied Physics | 1997
S. S. Harilal; C. V. Bindhu; R. C. Issac; V. P. N. Nampoori; C. P. G. Vallabhan
Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained.
Philosophical Transactions of the Royal Society A | 2006
D. A. Jaroszynski; R. Bingham; E. Brunetti; B. Ersfeld; J. G. Gallacher; van der Sb Bas Geer; R. C. Issac; S. P. Jamison; D. R. Jones; de Mj Marieke Loos; A. Lyachev; Vm Pavlov; Ajw Albert Reitsma; Ym Saveliev; G. Vieux; S. M. Wiggins
Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1 GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5 fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range.
Journal of Physics D | 1996
C. V. Bindhu; S. S. Harilal; Geetha K. Varier; R. C. Issac; V. P. N. Nampoori; C. P. G. Vallabhan
The dual-beam thermal lens technique has been found to be very effective for the measurement of fluorescence quantum yields of dye solutions. The concentration-dependence of the quantum yield of rhodamine B in methanol is studied here using this technique. The observed results are in line with the conclusion that the reduction in the quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. The thermal lens has been found to become abberated above 40 mW of pump laser power. This low value for the upper limit of pump power is due to the fact that the medium is a resonantly absorbing one.
Journal of Applied Physics | 1996
S. S. Harilal; R. C. Issac; C. V. Bindhu; V. P. N. Nampoori; C. P. G. Vallabhan
Laser ablation of graphite has been carried out using 1.06 mm radiation from a Q-switched Nd:YAG laser and the time of flight distribution of molecular C 2 present in the resultant plasma is investigated in terms of distance from the target as well as laser fluences employing time resolved spectroscopic technique. At low laser fluences the intensities of the emission lines from C 2 exhibit only single peak structure while beyond a threshold laser fluence, emission from C 2 shows a twin peak distribution in time. The occurrence of the faster velocity component at higher laser fluences is explained as due to species generated from recombination processes while the delayed peak is attributed to dissociation of higher carbon clusters resulting in the generation of C 2 molecule. Analysis of measured data provides a fairly complete picture of the evolution and dynamics of C2 species in the laser induced plasma from graphite.
Journal of Physics D | 1997
S. S. Harilal; R. C. Issac; C. V. Bindhu; V. P. N. Nampoori; C. P. G. Vallabhan
Optical emission studies of molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1 - . The characteristics of the spectral emission intensity from the (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.
Journal of Applied Physics | 2003
S. P. Jamison; Jingling Shen; D. R. Jones; R. C. Issac; B. Ersfeld; D. Clark; D. A. Jaroszynski
Terahertz time–domain spectral techniques are applied to the characterization of a He discharge plasma. Electro-optically sampling of the electric field of a quasi-unipolar terahertz pulse transmitted through the plasma has allowed both the real and imaginary parts of the plasma permittivity to be simultaneously measured over a large spectral range. The plasma density and the collisional frequency are determined within a 30 ps duration measurement window. An anomalously high collisional frequency has been measured.
New Journal of Physics | 2011
G. Vieux; A Lyachev; X. Yang; B. Ersfeld; John Patrick Farmer; E. Brunetti; R. C. Issac; G. Raj; G. H. Welsh; S. M. Wiggins; D. A. Jaroszynski
Raman amplification in plasma has been proposed to be a promising method of amplifying short radiation pulses. Here, we investigate chirped pulse Raman amplification (CPRA) where the pump pulse is chirped and leads to spatiotemporal distributed gain, which exhibits superradiant scaling in the linear regime, usually associated with the nonlinear pump depletion and Compton amplification regimes. CPRA has the potential to serve as a high-efficiency high-fidelity amplifier/compressor stage.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 1997
S. S. Harilal; R. C. Issac; C. V. Bindhu; Pramod Gopinath; V. P. N. Nampoori; C. P. G. Vallabhan
Time and space resolved studies of emission from CN molecules have been carried out in the plasma produced from graphite target by 1.06 urn pulses from a Q-switched Nd:YAG laser. Depending on the laser pulse energy, time of observation and position of the sampled volume of the plasma, the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as functions of distance, time, laser energy and ambient gas pressure. Evidence for nonlinear effects of the plasma medium such as self focusing which exhibits threshold-like behaviour are also obtained. Temperature and electron density of the plasma have been evaluated using the relative line intensities of successive ionization stages of carbon atom. These electron density measurements are verified by using Stark broadening method. 0 1997 Elsevier Science B.V.
Journal of Applied Physics | 1997
S. S. Harilal; R. C. Issac; C. V. Bindhu; V. P. N. Nampoori; C. P. G. Vallabhan
The emission features of laser ablated graphite plume generated in a helium ambient atmosphere have been investigated with time and space resolved plasma diagnostic technique. Time resolved optical emission spectroscopy is employed to reveal the velocity distribution of different species ejected during ablation. At lower values of laser fluences only a slowly propagating component of C2 is seen. At high fluences emission from C2 shows a twin peak distribution in time. The formation of an emission peak with diminished time delay giving an energetic peak at higher laser fluences is attributed to many body recombination. It is also observed that these double peaks get modified into triple peak time of flight distribution at distances greater than 16 mm from the target. The occurrence of multiple peaks in the C2 emission is mainly due to the delays caused from the different formation mechanism of C2 species. The velocity distribution of the faster peak exhibits an oscillating character with distance from the ...
conference on lasers and electro optics | 2010
S. M. Wiggins; Richard P. Shanks; R. C. Issac; G. H. Welsh; M. P. Anania; E. Brunetti; G. Vieux; S. Cipiccia; B. Ersfeld; M. R. Islam; R. T. L. Burgess; G. G. Manahan; Constantin Aniculaesei; W. A. Gillespie; A. M. MacLeod; D. A. Jaroszynski
Very stable, high quality electron beams (current ∼ 10 kA, energy spread < 1%, emittance ∼ 1π mm mrad) have been generated in a laser-plasma accelerator driven by 25 TW femtosecond laser pulses.