Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Coleman Lindsley is active.

Publication


Featured researches published by R. Coleman Lindsley.


The New England Journal of Medicine | 2014

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal; Jason Flannick; Alisa K. Manning; Peter Grauman; Brenton G. Mar; R. Coleman Lindsley; Craig H. Mermel; Noël P. Burtt; Alejandro Chavez; John M. Higgins; Vladislav Moltchanov; Frank C. Kuo; Michael J. Kluk; Brian E. Henderson; Leena Kinnunen; Heikki A. Koistinen; Claes Ladenvall; Gad Getz; Adolfo Correa; Benjamin F. Banahan; Stacey Gabriel; Sekar Kathiresan; Heather M. Stringham; Mark I. McCarthy; Michael Boehnke; Jaakko Tuomilehto; Christopher A. Haiman; Leif Groop; Gil Atzmon; James G. Wilson

BACKGROUND The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. METHODS We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. RESULTS Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). CONCLUSIONS Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).


Journal of Immunology | 2001

Resolution of Three Nonproliferative Immature Splenic B Cell Subsets Reveals Multiple Selection Points During Peripheral B Cell Maturation

David Allman; R. Coleman Lindsley; William DeMuth; Kristina Rudd; Susan A. Shinton; Richard R. Hardy

Although immature/transitional peripheral B cells may remain susceptible to selection pressures before full maturation, the nature and timing of these selection events remain unclear. We show that correlated expression of surface (s) IgM (sIgM), CD23, and AA4 defines three nonproliferative subpopulations of immature/transitional peripheral B cells. We designate these populations transitional (T) 1 (AA4+CD23−sIgMhigh), T2 (AA4+CD23+sIgMhigh), and T3 (AA4+CD23+sIgMlow). Cells within all three subsets are functionally immature as judged by their failure to proliferate following sIgM cross-linking in vitro, and their rapid rate of turnover in vivo as assessed by 5-bromo-2′-deoxyuridine labeling. These labeling studies also reveal measurable cell loss at both the T1-T2 and T2-T3 transitions, suggesting the existence of multiple selection points within the peripheral immature B cell pool. Furthermore, we find that Btk-deficient (xid) mice exhibit an incomplete developmental block at the T2-T3 transition within the immature B cell pool. This contrasts markedly with lyn−/− mice, which exhibit depressed numbers but normal ratios of each immature peripheral B cell subset and severely reduced numbers of mature B cells. Together, these data provide evidence for multiple selection points among immature peripheral B cells, suggesting that the B cell repertoire is shaped by multiple unique selection events that occur within the immature/transitional peripheral B cell pool.


Nature Immunology | 2005

B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator

John R. Sedy; Maya Gavrieli; Karen G. Potter; Michelle A. Hurchla; R. Coleman Lindsley; Kai Hildner; Stefanie Scheu; Klaus Pfeffer; Carl F. Ware; Theresa L. Murphy; Kenneth M. Murphy

B and T lymphocyte attenuator (BTLA) provides an inhibitory signal to B and T cells. Previously, indirect observations suggested that B7x was a ligand for BTLA. Here we show that BTLA does not bind B7x; instead, we identify herpesvirus entry mediator (HVEM) as the unique BTLA ligand. BTLA bound the most membrane-distal cysteine-rich domain of HVEM, distinct from regions where the ligands LIGHT and lymphotoxin-α bound HVEM. HVEM induced BTLA tyrosine phosphorylation and association of the tyrosine phosphatase SHP-2 and repressed antigen-driven T cell proliferation, providing an example of reverse signaling to a non–tumor necrosis factor family ligand. The conservation of the BTLA-HVEM interaction between mouse and human suggests that this system is an important pathway regulating lymphocyte activation and/or homeostasis in the immune response.


Blood | 2015

Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes

David P. Steensma; Rafael Bejar; Siddhartha Jaiswal; R. Coleman Lindsley; Mikkael A. Sekeres; Robert P. Hasserjian; Benjamin L. Ebert

Recent genetic analyses of large populations have revealed that somatic mutations in hematopoietic cells leading to clonal expansion are commonly acquired during human aging. Clonally restricted hematopoiesis is associated with an increased risk of subsequent diagnosis of myeloid or lymphoid neoplasia and increased all-cause mortality. Although myelodysplastic syndromes (MDS) are defined by cytopenias, dysplastic morphology of blood and marrow cells, and clonal hematopoiesis, most individuals who acquire clonal hematopoiesis during aging will never develop MDS. Therefore, acquisition of somatic mutations that drive clonal expansion in the absence of cytopenias and dysplastic hematopoiesis can be considered clonal hematopoiesis of indeterminate potential (CHIP), analogous to monoclonal gammopathy of undetermined significance and monoclonal B-cell lymphocytosis, which are precursor states for hematologic neoplasms but are usually benign and do not progress. Because mutations are frequently observed in healthy older persons, detection of an MDS-associated somatic mutation in a cytopenic patient without other evidence of MDS may cause diagnostic uncertainty. Here we discuss the nature and prevalence of CHIP, distinction of this state from MDS, and current areas of uncertainty regarding diagnostic criteria for myeloid malignancies.


Journal of Immunology | 2002

Cutting Edge: BLyS Enables Survival of Transitional and Mature B Cells Through Distinct Mediators

Benjamin L. Hsu; Susan M. Harless; R. Coleman Lindsley; David M. Hilbert; Michael P. Cancro

These studies characterize BLyS responsiveness and receptor expression among transitional and mature peripheral B cells. The results show a maturation-associated increase in BLyS binding capacity that reflects differential expression patterns of the three BLyS receptors. Accordingly, BLyS administration enlarges only late transitional and mature peripheral B (MB) cell compartments. Furthermore, bromodeoxyuridine labeling and cell cycle analyses show these effects are mediated through enhanced proportional survival of cells traversing the T2, T3, and MB cell stages, rather than by causing proliferation or slowing transit within these subsets. Despite similar effects on survival, BLyS up-regulates the antiapoptotic genes A1and bcl-xL in MB cells but not immature B cells. Together, these findings show that, while BLyS influences B cell survival in several peripheral differentiation subsets, the downstream mediators differ, thus providing the first direct evidence for an established B lineage survival system whose intermediates change as B cells mature.


Development | 2006

Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm

R. Coleman Lindsley; Jennifer G. Gill; Michael Kyba; Theresa L. Murphy; Kenneth M. Murphy

Formation of mesoderm from the pluripotent epiblast depends upon canonical Wnt/β-catenin signaling, although a precise molecular basis for this requirement has not been established. To develop a robust model of this developmental transition, we examined the role of Wnt signaling during the analogous stage of embryonic stem cell differentiation. We show that the kinetics of Wnt ligand expression and pathway activity in vitro mirror those found in vivo. Furthermore, inhibition of this endogenous Wnt signaling abrogates the functional competence of differentiating ES cells, reflected by their failure to generate Flk1+ mesodermal precursors and subsequent mature mesodermal lineages. Microarray analysis at various times during early differentiation reveal that mesoderm- and endoderm-associated genes fail to be induced in the absence of Wnt signaling, indicating a lack of germ layer induction that normally occurs during gastrulation in vivo. The earliest genes displaying Wnt-dependent expression, however, were those expressed in vivo in the primitive streak. Using an inducible form of stabilized β-catenin, we find that Wnt activity, although required, does not autonomously promote primitive streak-associated gene expression in vitro. Our results suggest that Wnt signaling functions in this model system to regulate the thresholds or stability of responses to other effector pathways and demonstrate that differentiating ES cells represent a useful model system for defining complex regulatory interactions underlying primary germ layer induction.


Cell Stem Cell | 2008

Mesp1 Coordinately Regulates Cardiovascular Fate Restriction and Epithelial-Mesenchymal Transition in Differentiating ESCs

R. Coleman Lindsley; Jennifer G. Gill; Theresa L. Murphy; Ellen M. Langer; Mi Cai; Mona Mashayekhi; Wei Wang; Noriko Niwa; Jeanne M. Nerbonne; Michael Kyba; Kenneth M. Murphy

Wnt signaling is required for development of mesoderm-derived lineages and expression of transcription factors associated with the primitive streak. In a functional screen, we examined the mesoderm-inducing capacity of transcription factors whose expression was Wnt-dependent in differentiating ESCs. In contrast to many inactive factors, we found that mesoderm posterior 1 (Mesp1) promoted mesoderm development independently of Wnt signaling. Transient Mesp1 expression in ESCs promotes changes associated with epithelial-mesenchymal transition (EMT) and induction of Snai1, consistent with a role in gastrulation. Mesp1 expression also restricted the potential fates derived from ESCs, generating mesoderm progenitors with cardiovascular, but not hematopoietic, potential. Thus, in addition to its effects on EMT, Mesp1 may be capable of generating the recently identified multipotent cardiovascular progenitor from ESCs in vitro.


Journal of Clinical Oncology | 2014

Somatic Mutations Predict Poor Outcome in Patients With Myelodysplastic Syndrome After Hematopoietic Stem-Cell Transplantation

Rafael Bejar; Kristen E. Stevenson; Bennett A. Caughey; R. Coleman Lindsley; Brenton G. Mar; Petar Stojanov; Gad Getz; David P. Steensma; Jerome Ritz; Robert J. Soiffer; Joseph H. Antin; Edwin P. Alyea; Philippe Armand; Vincent T. Ho; John Koreth; Donna Neuberg; Corey Cutler; Benjamin L. Ebert

PURPOSE Recurrently mutated genes in myelodysplastic syndrome (MDS) are pathogenic drivers and powerfully associated with clinical phenotype and prognosis. Whether these types of mutations predict outcome after allogeneic hematopoietic stem-cell transplantation (HSCT) in patients with MDS is not known. PATIENTS AND METHODS We used massively parallel sequencing to examine tumor samples collected from 87 patients with MDS before HSCT for coding mutations in 40 recurrently mutated MDS genes. RESULTS Mutations were identified in 92% of patients, most frequently in the ASXL1 (29%), TP53 (21%), DNMT3A (18%), and RUNX1 (16%) genes. In univariable analyses, only TP53 mutations were associated with shorter overall (OS; hazard ratio [HR], 3.74; P < .001) and progression-free survival (HR, 3.97; P < .001). After adjustment for clinical variables associated with these end points, mutations in TP53 (HR, 2.30; P = .027), TET2 (HR, 2.40; P = .033), and DNMT3A (HR, 2.08; P = .049) were associated with decreased OS. In multivariable analysis including clinical variables, complex karyotype status, and candidate genes, mutations in TP53 (HR, 4.22; P ≤ .001) and TET2 (HR, 1.68; P = .037) were each independently associated with shorter OS. Nearly one half of patients (46%) carried a mutation in TP53, DNMT3A, or TET2 and accounted for 64% of deaths. Three-year OS in patients without these mutations was 59% (95% CI, 43% to 72%), versus 19% (95% CI, 9% to 33%) in patients with these mutations. CONCLUSION Mutations in TP53, TET2, or DNMT3A identify patients with MDS with shorter OS after HSCT.


Nature Genetics | 2015

Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy

Michael Zhang; Jane E. Churpek; Siobán B. Keel; Tom Walsh; Ming K. Lee; Keith R. Loeb; Suleyman Gulsuner; Colin C. Pritchard; Marilyn Sanchez-Bonilla; Jeffrey J. Delrow; Ryan Basom; Melissa Forouhar; Boglarka Gyurkocza; Bradford S. Schwartz; Barbara Neistadt; Rafael Marquez; Christopher J. Mariani; Scott A. Coats; Inga Hofmann; R. Coleman Lindsley; David A. Williams; Janis L. Abkowitz; Marshall S. Horwitz; Mary Claire King; Lucy A. Godley; Akiko Shimamura

We report germline missense mutations in ETV6 segregating with the dominant transmission of thrombocytopenia and hematologic malignancy in three unrelated kindreds, defining a new hereditary syndrome featuring thrombocytopenia with susceptibility to diverse hematologic neoplasms. Two variants, p.Arg369Gln and p.Arg399Cys, reside in the highly conserved ETS DNA-binding domain. The third variant, p.Pro214Leu, lies within the internal linker domain, which regulates DNA binding. These three amino acid sites correspond to hotspots for recurrent somatic mutation in malignancies. Functional studies show that the mutations abrogate DNA binding, alter subcellular localization, decrease transcriptional repression in a dominant-negative fashion and impair hematopoiesis. These familial genetic studies identify a central role for ETV6 in hematopoiesis and malignant transformation. The identification of germline predisposition to cytopenias and cancer informs the diagnosis and medical management of at-risk individuals.


Journal of Immunology | 2001

A Common Pathway for Dendritic Cell and Early B Cell Development

David J. Izon; Kristina Rudd; William DeMuth; Cynthia Clendenin; R. Coleman Lindsley; David Allman

B cells and dendritic cells (DCs) each develop from poorly described progenitor cells in the bone marrow (BM). Although a subset of DCs has been proposed to arise from lymphoid progenitors, a common developmental pathway for B cells and BM-derived DCs has not been clearly identified. To address this possibility, we performed a comprehensive analysis of DC differentiative potential among lymphoid and B lymphoid progenitor populations in adult mouse BM. We found that both the common lymphoid progenitors (CLPs), shown here and elsewhere to give rise exclusively to lymphocytes, and a down-stream early B-lineage precursor population devoid of T and NK cell precursor potential each give rise to DCs when exposed to the appropriate cytokines. This result contrasts with more mature B-lineage precursors, all of which failed to give rise to detectable numbers of DCs. Significantly, both CLP and early B-lineage-derived DCs acquired several surface markers associated with functional DCs, and CLP-derived DCs readily induced proliferation of allogeneic CD4+ T cells. Surprisingly, however, DC differentiation from both lymphoid-restricted progenitors was accompanied by up-regulation of CD11b expression, a cell surface molecule normally restricted to myeloid lineage cells including putative myeloid DCs. Together, these data demonstrate that loss of DC developmental potential is the final step in B-lineage commitment and thus reveals a previously unrecognized link between early B cell and DC ontogeny.

Collaboration


Dive into the R. Coleman Lindsley's collaboration.

Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank C. Kuo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth M. Murphy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Peter Grauman

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge