Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Craig Albertson is active.

Publication


Featured researches published by R. Craig Albertson.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes

R. Craig Albertson; J. Todd Streelman; Thomas Kocher

East African cichlid fishes represent one of the most striking examples of rapid and convergent evolutionary radiation among vertebrates. Models of ecological speciation would suggest that functional divergence in feeding morphology has contributed to the origin and maintenance of cichlid species diversity. However, definitive evidence for the action of natural selection has been missing. Here we use quantitative genetics to identify regions of the cichlid genome responsible for functionally important shape differences in the oral jaw apparatus. The consistent direction of effects for individual quantitative trait loci suggest that cichlid jaws and teeth evolved in response to strong, divergent selection. Moreover, several chromosomal regions contain a disproportionate number of quantitative trait loci, indicating a prominent role for pleiotropy or genetic linkage in the divergence of this character complex. Of particular interest are genomic intervals with concerted effects on both the length and height of the lower jaw. Coordinated changes in this area of the oral jaw apparatus are predicted to have direct consequences for the speed and strength of jaw movement. Taken together, our results imply that the rapid and replicative nature of cichlid trophic evolution is the result of directional selection on chromosomal packages that encode functionally linked aspects of the craniofacial skeleton.


Development | 2006

Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates

Dany S. Adams; Kenneth R. Robinson; Takahiro Fukumoto; Shipeng Yuan; R. Craig Albertson; Pamela C. Yelick; Lindsay E. Kuo; Megan McSweeney; Michael Levin

Biased left-right asymmetry is a fascinating and medically important phenomenon. We provide molecular genetic and physiological characterization of a novel, conserved, early, biophysical event that is crucial for correct asymmetry: H+ flux. A pharmacological screen implicated the H+-pump H+-V-ATPase in Xenopus asymmetry, where it acts upstream of early asymmetric markers. Immunohistochemistry revealed an actin-dependent asymmetry of H+-V-ATPase subunits during the first three cleavages. H+-flux across plasma membranes is also asymmetric at the four- and eight-cell stages, and this asymmetry requires H+-V-ATPase activity. Abolishing the asymmetry in H+ flux, using a dominant-negative subunit of the H+-V-ATPase or an ectopic H+ pump, randomized embryonic situs without causing any other defects. To understand the mechanism of action of H+-V-ATPase, we isolated its two physiological functions, cytoplasmic pH and membrane voltage (Vmem) regulation. Varying either pH or Vmem, independently of direct manipulation of H+-V-ATPase, caused disruptions of normal asymmetry, suggesting roles for both functions. V-ATPase inhibition also abolished the normal early localization of serotonin, functionally linking these two early asymmetry pathways. The involvement of H+-V-ATPase in asymmetry is conserved to chick and zebrafish. Inhibition of the H+-V-ATPase induces heterotaxia in both species; in chick, H+-V-ATPase activity is upstream of Shh; in fish, it is upstream of Kupffers vesicle and Spaw expression. Our data implicate H+-V-ATPase activity in patterning the LR axis of vertebrates and reveal mechanisms upstream and downstream of its activity. We propose a pH- and Vmem-dependent model of the early physiology of LR patterning.


PLOS ONE | 2010

Bentho-Pelagic Divergence of Cichlid Feeding Architecture Was Prodigious and Consistent during Multiple Adaptive Radiations within African Rift-Lakes

W. James Cooper; Kevin J. Parsons; Alyssa McIntyre; Brittany Kern; Alana McGee-Moore; R. Craig Albertson

Background How particular changes in functional morphology can repeatedly promote ecological diversification is an active area of evolutionary investigation. The African rift-lake cichlids offer a calibrated time series of the most dramatic adaptive radiations of vertebrate trophic morphology yet described, and the replicate nature of these events provides a unique opportunity to test whether common changes in functional morphology have repeatedly facilitated their ecological success. Methodology/Principal Findings Specimens from 87 genera of cichlid fishes endemic to Lakes Tanganyka, Malawi and Victoria were dissected in order to examine the functional morphology of cichlid feeding. We quantified shape using geometric morphometrics and compared patterns of morphological diversity using a series of analytical tests. The primary axes of divergence were conserved among all three radiations, and the most prevalent changes involved the size of the preorbital region of the skull. Even the fishes from the youngest of these lakes (Victoria), which exhibit the lowest amount of skull shape disparity, have undergone extensive preorbital evolution relative to other craniofacial traits. Such changes have large effects on feeding biomechanics, and can promote expansion into a wide array of niches along a bentho-pelagic ecomorphological axis. Conclusions/Significance Here we show that specific changes in trophic anatomy have evolved repeatedly in the African rift lakes, and our results suggest that simple morphological alterations that have large ecological consequences are likely to constitute critical components of adaptive radiations in functional morphology. Such shifts may precede more complex shape changes as lineages diversify into unoccupied niches. The data presented here, combined with observations of other fish lineages, suggest that the preorbital region represents an evolutionary module that can respond quickly to natural selection when fishes colonize new lakes. Characterizing the changes in cichlid trophic morphology that have contributed to their extraordinary adaptive radiations has broad evolutionary implications, and such studies are necessary for directing future investigations into the proximate mechanisms that have shaped these spectacular phenomena.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Craniofacial divergence and ongoing adaptation via the hedgehog pathway

Reade B. Roberts; Yinan Hu; R. Craig Albertson; Thomas Kocher

Adaptive variation in craniofacial structure contributes to resource specialization and speciation, but the genetic loci that underlie craniofacial adaptation remain unknown. Here we show that alleles of the hedgehog pathway receptor Patched1 (Ptch1) gene are responsible for adaptive variation in the shape of the lower jaw both within and among genera of Lake Malawi cichlid fish. The evolutionarily derived allele of Ptch1 reduces the length of the retroarticular (RA) process of the lower jaw, a change predicted to increase speed of jaw rotation for improved suction-feeding. The alternate allele is associated with a longer RA and a more robustly mineralized jaw, typical of species that use a biting mode of feeding. Genera with the most divergent feeding morphologies are nearly fixed for different Ptch1 alleles, whereas species with intermediate morphologies still segregate variation at Ptch1. Thus, the same alleles that help to define macroevolutionary divergence among genera also contribute to microevolutionary fine-tuning of adaptive traits within some species. Variability of craniofacial morphology mediated by Ptch1 polymorphism has likely contributed to niche partitioning and ecological speciation of these fishes.


Trends in Genetics | 2009

Evolutionary mutant models for human disease.

R. Craig Albertson; William A. Cresko; H. William Detrich; John H. Postlethwait

Although induced mutations in traditional laboratory animals have been valuable as models for human diseases, they have some important limitations. Here, we propose a complementary approach to discover genes and mechanisms that might contribute to human disorders: the analysis of evolutionary mutant models in which adaptive phenotypes mimic maladaptive human diseases. If the type and mode of action of mutations favored by natural selection in wild populations are similar to those that contribute to human diseases, then studies in evolutionary mutant models have the potential to identify novel genetic factors and gene-by-environment interactions that affect human health and underlie human disease.


BMC Evolutionary Biology | 2010

Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes

R. Craig Albertson; Yi-Lin Yan; Tom A. Titus; Eva Pisano; Marino Vacchi; Pamela C. Yelick; H. William Detrich; John H. Postlethwait

BackgroundPedomorphism is the retention of ancestrally juvenile traits by adults in a descendant taxon. Despite its importance for evolutionary change, there are few examples of a molecular basis for this phenomenon. Notothenioids represent one of the best described species flocks among marine fishes, but their diversity is currently threatened by the rapidly changing Antarctic climate. Notothenioid evolutionary history is characterized by parallel radiations from a benthic ancestor to pelagic predators, which was accompanied by the appearance of several pedomorphic traits, including the reduction of skeletal mineralization that resulted in increased buoyancy.ResultsWe compared craniofacial skeletal development in two pelagic notothenioids, Chaenocephalus aceratus and Pleuragramma antarcticum, to that in a benthic species, Notothenia coriiceps, and two outgroups, the threespine stickleback and the zebrafish. Relative to these other species, pelagic notothenioids exhibited a delay in pharyngeal bone development, which was associated with discrete heterochronic shifts in skeletal gene expression that were consistent with persistence of the chondrogenic program and a delay in the osteogenic program during larval development. Morphological analysis also revealed a bias toward the development of anterior and ventral elements of the notothenioid pharyngeal skeleton relative to dorsal and posterior elements.ConclusionsOur data support the hypothesis that early shifts in the relative timing of craniofacial skeletal gene expression may have had a significant impact on the adaptive radiation of Antarctic notothenioids into pelagic habitats.


The American Naturalist | 2012

Constraint and Opportunity: The Genetic Basis and Evolution of Modularity in the Cichlid Mandible

Kevin J. Parsons; Eladio Márquez; R. Craig Albertson

Modular variation, whereby the relative degree of connectivity varies within a system, is thought to evolve through a process of selection that favors the integration of certain traits and the decoupling of others. In this way, modularity may facilitate the pace of evolution and determine evolvability. Alternatively, conserved patterns of modularity may act to constrain the rate and direction of evolution by preventing certain functions from evolving. A comprehensive understanding of the potential interplay between these phenomena will require knowledge of the inheritance and the genetic basis of modularity. Here we explore these ideas in the cichlid mandible by investigating patterns of modularity at the clade and species levels and through the introduction of a new approach, the individual level. Specifically, we assessed patterns of covariation in Lake Malawi cichlid species that employ alternate “biting” and “suction-feeding” modes of feeding and in a hybrid cross between these two ecotypes. Across the suction-feeding clade, patterns of modularity were largely conserved and reflected a functionally based pattern. In contrast, the biting species displayed a pattern of modularity that more closely matched developmental modules. The pattern of modularity present in our F2 population was very similar to the pattern exhibited by the biter, suggesting a role for dominant inheritance. We demonstrate that our individual-level metric of modularity (IMM) is a valid quantitative trait that has a nonlinear relationship with shape. IMMs for each model were used as quantitative characters to map quantitative trait loci (QTL) that underlie modularity. Our QTL analysis offers new insights into the genetic basis of modularity in these fishes that may eventually lead to the discovery of the genetic processes that delineate particular modules. In all, our findings suggest that modularity is both a constraining and an evolvable force in cichlid evolution, as distinct patterns occur between species and variation exists among individuals.


BMC Biology | 2010

Evolution of a unique predatory feeding apparatus: functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids

Thomas A. Stewart; R. Craig Albertson

BackgroundWhile bilaterality is a defining characteristic of triploblastic animals, several assemblages have managed to break this symmetry in order to exploit the adaptive peaks garnered through the lateralization of behaviour or morphology. One striking example of an evolved asymmetry in vertebrates comes from a group of scale-eating cichlid fishes from Lake Tanganyika. Members of the Perissodini tribe of cichlid fishes have evolved dental and craniofacial asymmetries in order to more effectively remove scales from the left or right flanks of prey. Here we examine the evolution and development of craniofacial morphology and laterality among Lake Tanganyika scale-eating cichlids.ResultsUsing both geometric and traditional morphometric methods we found that the craniofacial evolution in the Perissodini involved discrete shifts in skeletal anatomy that reflect differences in habitat preference and predation strategies. Further, we show that the evolutionary history of the Perissodini is characterized by an accentuation of craniofacial laterality such that certain taxa show elaborate sided differences in craniofacial shape consistent with the sub-partitioning of function between sides of the head during attacks. Craniofacial laterality in the scale-eating specialist Perissodus microlepis was found to be evident early in development and exhibited a unimodal distribution, which is contrary to the adult condition where jaw laterality has been described as a discrete, bimodal antisymmetry. Finally, using linkage and association analyses we identified a conserved locus for jaw handedness that segregates among East African cichlids.ConclusionsWe suggest that, during the evolution of the Perissodini, selection has accentuated a latent, genetically determined handedness of the craniofacial skeleton, enabling the evolution of jaw asymmetries in order to increase predation success. Continued work on the developmental genetic basis of laterality in the Perissodini will facilitate a better understanding of the evolution of this unique group of fishes, as well as of left-right axis determination among vertebrates in general.


PLOS ONE | 2012

Role of Chd7 in Zebrafish: A Model for CHARGE Syndrome

Shunmoogum A. Patten; Nicole L. Jacobs-McDaniels; Charlotte Zaouter; Pierre Drapeau; R. Craig Albertson; Florina Moldovan

CHARGE syndrome is caused by mutations in the CHD7 gene. Several organ systems including the retina, cranial nerves, inner ear and heart are affected in CHARGE syndrome. However, the mechanistic link between mutations in CHD7 and many of the organ systems dysfunction remains elusive. Here, we show that Chd7 is required for the organization of the neural retina in zebrafish. We observe an abnormal expression or a complete absence of molecular markers for the retinal ganglion cells and photoreceptors, indicating that Chd7 regulates the differentiation of retinal cells and plays an essential role in retinal cell development. In addition, zebrafish with reduced Chd7 display an abnormal organization and clustering of cranial motor neurons. We also note a pronounced reduction in the facial branchiomotor neurons and the vagal motor neurons display aberrant positioning. Further, these fish exhibit a severe loss of the facial nerves. Knock-down of Chd7 results in a curvature of the long body axis and these fish develop irregular shaped vertebrae and have a reduction in bone mineralization. Chd7 knockdown also results in a loss of proper segment polarity illustrated by flawed efnb2a and ttna expression, which is associated with later vascular segmentation defects. These critical roles for Chd7 in retinal and vertebral development were previously unrecognized and our results provide new insights into the role of Chd7 during development and in CHARGE syndrome pathogenesis.


Evolutionary Biology-new York | 2011

Hybridization Promotes Evolvability in African Cichlids: Connections Between Transgressive Segregation and Phenotypic Integration

Kevin J. Parsons; Young H. Son; R. Craig Albertson

Hybridization is a potential source of novel variation through (1) transgressive segregation, and (2) changes in the patterns and strength of phenotypic integration. We investigated the capacity of hybridization to generate novel phenotypic variation in African cichlids by examining a large F2 population generated by hybridizing two Lake Malawi cichlid species with differently shaped heads. Our morphometric analysis focused on the lateral and ventral views of the head. While the lateral view exhibited marked transgressive segregation, the ventral view showed a limited ability for transgression, indicating a difference in the genetic architecture and selective history between alternate views of the head. Moreover, hybrids showed a marked reduction in integration, with a lower degree of integration observed in transgressive individuals. In all, these data offer novel insights into how hybridization can promote evolvability, and provide a possible explanation for how broad phenotypic diversity may be achieved in rapidly evolving groups.

Collaboration


Dive into the R. Craig Albertson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kara E. Powder

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Todd Streelman

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge