Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. de la Fuente Marcos is active.

Publication


Featured researches published by R. de la Fuente Marcos.


Monthly Notices of the Royal Astronomical Society | 2014

Extreme trans-Neptunian objects and the Kozai mechanism: signalling the presence of trans-Plutonian planets

C. de la Fuente Marcos; R. de la Fuente Marcos

The existence of an outer planet beyond Pluto has been a matter of debate for decades and the recent discovery of 2012 VP113 has just revived the interest for this controversial topic. This Sedna-like object has the most distant perihelion of any known minor planet and the value of its argument of perihelion is close to 0 degrees. This property appears to be shared by almost all known asteroids with semimajor axis greater than 150 au and perihelion greater than 30 au (the extreme trans-Neptunian objects or ETNOs), and this fact has been interpreted as evidence for the existence of a super-Earth at 250 au. In this scenario, a population of stable asteroids may be shepherded by a distant, undiscovered planet larger than the Earth that keeps the value of their argument of perihelion librating around 0 degrees as a result of the Kozai mechanism. Here, we study the visibility of these ETNOs and confirm that the observed excess of objects reaching perihelion near the ascending node cannot be explained in terms of any observational biases. This excess must be a true feature of this population and its possible origin is explored in the framework of the Kozai effect. The analysis of several possible scenarios strongly suggest that at least two trans-Plutonian planets must exist.


Monthly Notices of the Royal Astronomical Society | 2012

On the dynamical evolution of 2002 VE68

C. de la Fuente Marcos; R. de la Fuente Marcos

The minor planet 2002 VE68 was identified as a quasi-satellite of Venus shortly after its discovery. At that time its data-arc span was only 24 d; now it is 2947 d. Here we revisit the topic of the dynamical status of this remarkable object as well as look into its dynamical past and explore its future orbital evolution which is driven by close encounters with both the Earth–Moon system and Mercury. In our calculations, we use a Hermite integration scheme, the most updated ephemerides and include the perturbations by the eight major planets, the Moon and the three largest asteroids. We confirm that 2002 VE68 currently is a quasi-satellite of Venus, and it has remained as such for at least 7000 yr after a close fly-by with the Earth. Prior to that encounter the object may have already been co-orbital with Venus or moving in a classical, non-resonant near-Earth object (NEO) orbit. The object drifted into the quasi-satellite phase from an L4 Trojan state. We also confirm that, at aphelion, dangerously close encounters with the Earth (under 0.002 au, well inside the Hill sphere) are possible. We find that 2002 VE68 will remain as a quasi-satellite of Venus for about 500 yr more and its dynamical evolution is controlled not only by the Earth, with a non-negligible contribution from the Moon, but by Mercury as well. 2002 VE68 exhibits resonant (or near-resonant) behaviour with Mercury, Venus and the Earth. Our calculations indicate that an actual collision with the Earth during the next 10 000 yr is highly unlikely but encounters as close as 0.04 au occur with a periodicity of 8 yr.


The Astrophysical Journal | 2009

HIERARCHICAL STAR FORMATION IN THE MILKY WAY DISK

R. de la Fuente Marcos; C. de la Fuente Marcos

Hierarchical star formation leads to a progressive decrease in the clustering of star clusters both in terms of spatial scale and age. Consistently, statistical analysis of the positions and ages of clusters in the Milky Way disk strongly suggests that a correlation between the duration of star formation in a region and its size does exist. The average age difference between pairs of open clusters increases with their separation as the ~0.16 power. In contrast, for the Large Magellanic Cloud, Efremov & Elmegreen found that the age difference scales with the ~0.35 power of the region size. This discrepancy may be tentatively interpreted as an argument in support of intrinsically shorter (faster) star formation timescales in smaller galaxies. However, if both the effects of cluster dissolution and incompleteness are taken into consideration, the average age difference between cluster pairs in the Galaxy increases with their separation as the ~0.4 power. This result implies that the characteristic timescale for coherent, clustered-mode star formation is nearly 1 Myr. Therefore, the overall consequence of ignoring the effect of cluster dissolution is to overestimate the star formation timescale. On the other hand, in the Galactic disk and for young clusters separated by less than three times the characteristic cluster tidal radius (10 pc), the average age difference is 16 Myr, which suggests common origin. A close pair classification scheme is introduced and a list of 11 binary cluster candidates with physical separation less than 30 pc is compiled. Two of these pairs are likely primordial: ASCC 18/ASCC 21 and NGC 3293/NGC 3324. A triple cluster candidate in a highly hierarchical configuration is also identified: NGC 1981/NGC 1976/Collinder 70 in Orion. We find that binary cluster candidates seem to show a tendency to have components of different size—evidence for dynamical interaction.


The Astrophysical Journal | 2008

From Star Complexes to the Field: Open Cluster Families

R. de la Fuente Marcos; C. de la Fuente Marcos

The currently accepted paradigm for star formation assumes that field stars are born in clusters. These are not formed in isolation but in stellar complexes born out of giant molecular clouds. In the Galactic disk, molecular clouds have distinctive orbits, which, as they disappear after star formation is complete, may seed the Galactic disk with families of young clusters. These families gradually disperse to become individual clusters and, eventually, field populations. We investigate the existence of dynamical families of open clusters in the solar neighborhood using both age- and volume-limited samples from WEBDA in the framework of scan statistics. Our analysis indicates that a significant number of known young clusters organize in groups when age, spatial distribution, and kinematics are taken into account simultaneously. We find compelling statistical evidence for the presence of at least five dynamical families of young open clusters in the Milky Way disk associated to the underlying spiral structure. The young cluster population seems to be dominated by families of 10-20 objects; they are short-lived and the likely progenitors of classical moving groups, and stellar streams. Available observational data suggests that 50%-80% of newly formed open clusters dissolve within 20 Myr of formation to become field population. The overall age distribution of open clusters shows a steep decline, -->dN/dτ τβ, with -->β = − 3.6 ± 0.5 for clusters younger than 100 Myr, although it could be dependent on the local conditions as it ranges from -->β = − 1.0 ± 0.2 in the direction of Puppis to -->β = − 2.8 ± 0.5 in Norma. Due to the high rate of destruction among young clusters, any cluster-related coherent substructure must be younger than about 30 Myr unless it is the result of dynamically induced corotation resonances within the Galactic disk or minor mergers. The characteristic timescale for stars to become part of the field stellar populations is 10-20 Myr.


New Astronomy | 2004

On the correlation between the recent star formation rate in the solar neighbourhood and the glaciation period record on earth

R. de la Fuente Marcos; C. de la Fuente Marcos

Abstract Shaviv [New Astron. 8 (2003) 39; J. Geophys. Res. 108 (2003) 3] has shown evidence for a correlation between variations in the Galactic cosmic ray flux reaching Earth and the glaciation period record on Earth during the last 2 Gyr. If the flux of cosmic rays is mainly the result of Type II supernovae, an additional correlation between the star formation history of the Solar Neighbourhood and the timing of past ice ages is expected. Higher star formation rate implies increased cosmic ray flux and this may translate into colder climate through a rise in the average low altitude cloud cover. Here we reanalyze the correlation between this star formation history and the glaciation period record on Earth using a volume limited open cluster sample. Numerical modeling and recent observational data indicate that the correlation is rather strong but only if open clusters within 1.5 kpc from the Sun are considered. Under this constraint, our statistical analysis not only suggests a strong correlation in the timing of the events (enhanced star formation and glaciation episodes), but also in the severity and length of the episodes. In particular, the snowball Earth scenario appears to be connected with the strongest episode of enhanced star formation recorded in the Solar Neighbourhood during the last 2 Gyr.


Astrophysics and Space Science | 2000

On the dynamical evolution of the brown dwarf populationin open clusters

R. de la Fuente Marcos; C. de la Fuente Marcos

It is by now well established that open clusters contain a considerable fraction of brown dwarfs (BDs). This paper investigates the dynamical evolution of this substellar population by using simulations with Aarseths (1994) NBODY5 code. A noticeable preferential escape of BDs is found, which may influence the determination of the IMF of substellar objects in dynamically evolved open clusters. This small dynamical-in-origin depletion may not explain, however, the scarcity of BDs observed in some evolved clusters, as the Hyades. On the other hand, BD cooling processes are able to reduce our ability to detect BDs in old clusters in a very significant way. Our results confirm that the probability of observing BDs in open clusters is almost the same over the whole cluster area because they are distributed quite uniformly even at late stages of the evolution of the cluster. This is expected to be a general feature as observed for low-mass stars in well studied open clusters (Pleiades, Praesepe). Our present calculations show that clusters as old as the Pleiades may have lost about 10% of their initial BD population but the number ratio of BDs to normal (not substellar) stars must remain almost unchanged. However, the long-term behavior of the relative percentage of BDs depends strongly on the initial mass function (IMF) assumed in the calculations. Clusters with a Salpeterian IMF evolve to reach relative percentages of BDs as low as 40% for a starting value around 70%. Our results suggest that BDs in clusters escape preferentially by evaporation.It is by now well established that open clusters contain a considerable fraction of brown dwarfs (BDs). This paper investigates the dynamical evolution of this substellar population by using simulations with Aarseths (1994) NBODY5 code. A noticeable preferential escape of BDs is found, which may influence the determination of the IMF of substellar objects in dynamically evolved open clusters. This small dynamical-in-origin depletion may not explain, however, the scarcity of BDs observed in some evolved clusters, as the Hyades. On the other hand, BD cooling processes are able to reduce our ability to detect BDs in old clusters in a very significant way. Our results confirm that the probability of observing BDs in open clusters is almost the same over the whole cluster area because they are distributed quite uniformly even at late stages of the evolution of the cluster. This is expected to be a general feature as observed for low-mass stars in well studied open clusters (Pleiades, Praesepe). Our present calculations show that clusters as old as the Pleiades may have lost about 10% of their initial BD population but the number ratio of BDs to normal (not substellar) stars must remain almost unchanged. However, the long-term behavior of the relative percentage of BDs depends strongly on the initial mass function (IMF) assumed in the calculations. Clusters with a Salpeterian IMF evolve to reach relative percentages of BDs as low as 40% for a starting value around 70%. Our results suggest that BDs in clusters escape preferentially by evaporation.


Monthly Notices of the Royal Astronomical Society | 2013

A resonant family of dynamically cold small bodies in the near-Earth asteroid belt

C. de la Fuente Marcos; R. de la Fuente Marcos

Near-Earth objects (NEOs) moving in resonant, Earth-like orbits are potentially important. On the positive side, they are the ideal targets for robotic and human low-cost sample return missions and a much cheaper alternative to using the Moon as an astronomical observatory. On the negative side and even if small in size (2-50 m), they have an enhanced probability of colliding with the Earth causing local but still significant property damage and loss of life. Here, we show that the recently discovered asteroid 2013 BS45 is an Earth co-orbital, the sixth horseshoe librator to our planet. In contrast with other Earths co-orbitals, its orbit is strikingly similar to that of the Earth yet at an absolute magnitude of 25.8, an artificial origin seems implausible. The study of the dynamics of 2013 BS45 coupled with the analysis of NEO data show that it is one of the largest and most stable members of a previously undiscussed dynamically cold group of small NEOs experiencing repeated trappings in the 1:1 commensurability with the Earth. This new resonant family is well constrained in orbital parameter space and it includes at least 10 other transient members: 2003 YN107, 2006 JY26, 2009 SH2 and 2012 FC71 among them. 2012 FC71 represents the best of both worlds as it is locked in a Kozai resonance and is unlikely to impact the Earth. Objects in this group could be responsible for the production of Earths transient irregular natural satellites.


Monthly Notices of the Royal Astronomical Society | 2013

The Chelyabinsk superbolide: a fragment of asteroid 2011 EO40?

C. de la Fuente Marcos; R. de la Fuente Marcos

Bright fireballs or bolides are caused by meteoroids entering the Earths atmosphere at high speed. On 2013 February 15, a superbolide was observed in the skies near Chelyabinsk, Russia. Such a meteor could be the result of the decay of an asteroid and here we explore this possibility applying a multistep approach. First, we use available data and Monte Carlo optimization (validated using 2008 TC3 as template) to obtain a robust solution for the pre-impact orbit of the Chelyabinsk impactor (semimajor axis = 1.62 au, eccentricity = 0.53, inclination = 3.82 deg, longitude of the ascending node = 326.41 deg and argument of perihelion = 109.44 deg). Then, we use this most probable orbit and numerical analysis to single out candidates for membership in, what we call, the Chelyabinsk asteroid family. Finally, we perform N-body simulations to either confirm or reject any dynamical connection between candidates and impactor. We find reliable statistical evidence on the existence of the Chelyabinsk cluster. It appears to include multiple small asteroids and two relatively large members: 2007 BD7 and 2011 EO40. The most probable parent body for the Chelyabinsk superbolide is 2011 EO40. The orbits of these objects are quite perturbed as they experience close encounters not only with the Earth-Moon system but also with Venus, Mars and Ceres. Under such conditions, the cluster cannot be older than about 20-40 kyr.


Monthly Notices of the Royal Astronomical Society | 2016

Finding Planet Nine: a Monte Carlo approach

C. de la Fuente Marcos; R. de la Fuente Marcos

Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30 degrees, and an argument of perihelion of 150 degrees. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal anti-alignment scenario. In addition and after studying the current statistics of ETNOs, a cautionary note on the robustness of the perihelia clustering is presented.


Astronomy and Astrophysics | 2012

(309239) 2007 RW10: a large temporary quasi-satellite of Neptune

C. de la Fuente Marcos; R. de la Fuente Marcos

Upon discovery, asteroid (309239) 2007 RW10 was considered a Neptune Trojan candidate. The object is currently listed by the Minor Planet Center as a Centaur but it is classified as a Scattered Disk or Trans-Neptunian Object by others. Now that its arc-length is 8,154 days and has been observed for more than 20 years, a more robust classification should be possible. Here we explore the orbital behaviour of this object in order to reveal its current dynamical status; we perform N-body simulations in both directions of time to investigate the evolution of its orbital elements. In particular, we study the librational properties of the mean longitude that currently librates around the value of the mean longitude of Neptune with an amplitude of nearly 50 degrees and a period of about 7,500 years. Our calculations show that it has been in its present dynamical state for about 12,500 years and it will stay there for another 12,500 years. Therefore, its current state is relatively short-lived. Due to its chaotic behaviour, the object may have remained in the 1:1 mean motion resonance with Neptune for several 100,000 years at most, undergoing transitions between the various resonant states. (309239) 2007 RW10 is currently a quasi-satellite, the first object of this dynamical class to be discovered around Neptune. With a diameter of about 250 km, it is the largest known co-orbital in the Solar System. Its significant eccentricity (0.30) and orbital inclination (36 degrees), strongly suggest that it did not form in situ but was captured, likely from beyond Neptune. With an apparent magnitude of 21.1 at opposition (October), it is well suited for spectroscopic observations that may provide information on its surface composition and hence eventually its origin.

Collaboration


Dive into the R. de la Fuente Marcos's collaboration.

Top Co-Authors

Avatar

C. de la Fuente Marcos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos de la Fuente Marcos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. R. Solivella

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

J. de León

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge