R. De Lisi
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. De Lisi.
Journal of Solution Chemistry | 1986
R. De Lisi; V. Turco Liveri; Maurizio Castagnolo; A. Inglese
The densities of 1-butanol and 1-pentanol were measured in aqueous solutions of dodecyltrimethylammonium bromide and dodecyldimethylamine oxide and the partial molar volumes at infinite dilution of the alcohols in aqueous surfactants solutions were obtained. The observed trends of this quantity as a function of the surfactant concentration were rationalized using a mass-action model for the alcohol distribution between the aqueous and the micellar phase. At the same time, the model was revised to account for the alcohol effect on the surfactant micellization equilibrium. The partial molar volume of alcohols in the aqueous and in the micellar phases and the ratios between the binding constant and the aggregation number were calculated. These thermodynamic quantities are nearly the same in the two surfactants analyzed in this paper but differ appreciably from those in sodium dodecylsulfate. The apparent molar volume of surfactants in some hydroalcoholic solutions at fixed alcohol concentration were also calculated. In the micellization region the trend of this quantity as a function of the surfactant concentration shows a hump, which depends on the alcohol concentration and on the alcohol alkyl chain length. The alcohol extraction from the aqueous to the micellar phase due to the addition of the surfactant can account for the observed trends.
Journal of Solution Chemistry | 1988
R. De Lisi; E. Fisicaro; S. Milioto
Densities, heat capacities, enthalpies of dilution, osmotic coefficients and conductivities are reported for dodecylamine hydrochloride, dodecyldimethylammonium and dodecyltrimethylammonium chloride in water over a wide range of concentration. The last two properties were also measured for dodecyltrimethylammonium bromide. From the thermodynamic data partial molar volumes, heat capacities and relative enthalpies and nonideal free energies and entropies were derived as a function of the surfactant concentration. The cmcs and degree of counterion dissociation were also calculated from the transport properties. It is shown that the trends of volumes, enthalpies, free energies and entropies are quite regular whereas heat capacities present maxima and minima at concentrations which depend on the nature of surfactants. Corresponding changes were observed in the osmotic coefficients and specific conductivities. The thermodynamic functions of micellization were evaluated on the basis of the pseudo-phase transition model. Finally, the effects of the introduction of methyl groups in the hydrophilic moiety of the surfactant and of the nature of the counterion on the thermodynamic properties of monomers and micelles are examined.
Journal of Solution Chemistry | 1990
R. De Lisi; S. Milioto; R. E. Verrall
Density and ultrasound measurements were performed for dodecyl- and tetradecyltrimethylammonium bromide at 15, 25 and 35°C and for hexadecyltrimethylammonium bromide at 25, 35 and 45°C over a wide concentration region. From these and previously reported data, partial molar volumes and isentropic and isothermal compressibilities were derived as a function of the surfactant concentration. It is shown that by increasing the surfactant concentration the apparent molar volumes and compressibilities increase according to the expected behavior of surfactant solutions. However, anomalies are displayed in plots of apparent molar compressibility of tetradecyltrimethylammonium bromide and of the speed of sound for all the surfactants studied as a function of concentration. These peculiarities can be ascribed to micellar structural transitions. The standard thermodynamic properties and the CH2 group contributions have been obtained by the additivity rule. The results obtained for the compressibility and volume properties are different from those reported in the literature. The volumes and compressibilities of micellization were graphically evaluated on the basis of the pseudo-phase transition model.
Journal of Solution Chemistry | 1987
R. De Lisi; S. Milioto; Maurizio Castagnolo; A. Inglese
The enthalpies of solution and of dilution of 1-butanol and 1-pentanol were measured in micellar solutions of dodecyltrimethylammonium bromide by systematically changing the concentration of alcohols and surfactant. The enthalpies of solution at infinite dilution of alcohols at each surfactant concentration were evaluated from a linear plot. This quantity increases with surfactant concentration (up to 0.8m) with a curvature which depends on the alcohol alkyl chain length. The difficulties arising for a quantitative treatment of both the enthalpies of dilution and of solution at finite alcohol concentrations are discussed. The dependence on the surfactant concentration of the standard enthalpies of solution and the enthalpies of dilution for m→0 are rationalized. From the resulting equations the distribution constant, standard enthalpy of transfer, standard enthalpy of solution, and the alcohol-alcohol interaction parameter in the micellar phase are evaluated. The enthalpies of transfer obtained using this technique agree well with those previously reported from enthalpies of mixing. The distribution constants also agree with those reported in the literature from several approaches: mixing enthalpies, partial molar volumes, and the dependence of the cmc on added alcohol.
Journal of Colloid and Interface Science | 1987
R. De Lisi; S. Milioto; V. Turco Liveri
Abstract The mixing enthalpies of aqueous solutions of normal alkanols (from methanol to heptanol) and of dodecyltrimethylammonium bromide were measured taking the enthalpy of dilution of the surfactant solutions as the baseline of the mixing process. The measurements were generally made at a given alcohol concentration by systematically changing the surfactant concentration. In some cases measurements as a function of the alcohol concentration were also carried out. Below the CMC from the mixing enthalpies the pair and the triplet interaction parameters between alcohol and surfactant molecules were calculated. The trend of these parameters as a function of the number of carbon atoms in the alcohol alkyl chain is peculiar in that it is linear for the h RS pair parameter and of an exponential-type for h RSS , whereas the h RRS triplet parameter shows a minimum for butanol. Above the CMC the mixing enthalpies were rationalized using a previously reported model for the alcohol distribution between the aqueous and the micellar phases. From the resulting equation the distribution constant and the transfer enthalpy (and then the standard free energy and entropy) can be obtained at the same time. In the calculation of these quantities the role of the alcohol—surfactant interactions in the aqueous phase and of the displacement of the micellization equilibrium due to the added alcohol is pointed out. As predicted, the additivity rule always holds for the standard free energy of transfer but only holds up to butanol for enthalpy and entropy.
Journal of Physical Chemistry B | 2008
R. De Lisi; Michael Gradzielski; Giuseppe Lazzara; S. Milioto; N. Muratore; Sylvain Prévost
The effect of polyethylene oxide (PEO) or polypropylene oxide (PPO) oligomers of various molecular weight (Mw) as well as of triblock copolymers, based on PEO and PPO blocks, on aqueous laponite RD suspensions was studied with small-angle neutron scattering (SANS). The radius of gyration (RG) increases for low M w whereas the opposite occurs for larger Mw. This behavior is explained on the basis that an effective R G is given by two contributions: (1) the size of the particles coated with the polymer and (2) the interactions between the laponite RD particles which are attractive for small and repulsive for large polymers. The SANS curves in the whole Q-range are well described by a model of noninteracting polydisperse core+shell disks, where the thickness of the polymer layer increases with the Mw. The adsorbed polymer is in a more compact conformation compared to a random coil distribution while the fraction of the polymer in the shell formed around the laponite RD particles is nearly independent of Mw. For increasing laponite RD amounts, at a given polymer composition, the thickness of the polymer slightly changes. In some cases, where also gelation is sped up, a structure factor with attractive interaction was employed which allowed to evaluate the attractive forces between the laponite RD particles. The gelation time was determined for mixtures at fixed copolymer and laponite RD concentrations. Surprisingly, it is observed that gels are formed despite the fact that the binding sites of the laponite RD particles are almost covered but the polymer size is too small to prevent aggregation. The gelation rate is correlated to structure and thermodynamics of these systems. Namely, when the balance between the steric forces and the depletion attractive forces undergoes an abrupt change the gelation time also undergoes a sharp variation. For lower and comparable Mw, PPO speeds up the gelation more efficiently than PEO while for higher Mw the gelation kinetics is slowed down again. Interestingly, copolymers of PEO and PPO blocks do not induce gelation in the time-window where the homopolymers do.
Journal of Solution Chemistry | 1991
S. Causi; R. De Lisi; S. Milioto
Densities, heat capacities and enthalpies of dilution at 25°C and osmotic coefficients at 37°C were measured for N-octyl-, N-decyl- and N-dodecyl-pyridinium chlorides in water over a wide concentration region. Conductivity measurements were performed in order to evaluate the cmc and the degree of counterion dissociation. Partial molar volumes, heat capacities, relative enthalpies and nonideal free energies and entropies at 25°C were derived from the experimental data as functions of the surfactant concentration. The changes with concentration of these properties are quite regular with the exception of the heat capacities which display anomalies at about 0.9, 0.25 and 0.12 mol-kg−1 for the octyl, decyl and dodecyl compounds, respectively. At these concentrations there were also changes in the slopes of the specific conductivity and of the product of the osmotic coefficients and the molality vs. concentration. These peculiarities can be ascribed to micelle structural transitions. The thermodynamic functions of micellization were graphically evaluated on the basis of the pseudo-phase transition model. These data have been compared to those for alkyltrimethylammonium bromides and alkylnicotinamide chlorides. It is shown that the introduction of the hydrophilic CONH2 group lowers the hydrophilic character of the pyridinium ring.
Journal of Solution Chemistry | 1987
S. Milioto; D. Romancino; R. De Lisi
The excess enthalpies of solution with respect to water of some primary and secondary alcohols in dodecyldimethylamine oxide (DDAO) micellar solutions were measured by mixing aqueous solutions of alcohols with surfactant solutions. Standard free energies, enthalpies and entropies were obtained from the distribution of alcohols between aqueous and micellar phases. It is shown that thermodynamics of transfer of secondary alcohols from aqueous to the DDAO micellar phase differ slightly from those of their corresponding primary alcohols, that the additivity rule holds for free energies of transfer and that enthalpy and entropy display convex curves. The present data are compared with those from the aqueous to the dodecyltrimethylammonium bromide (DTAB) micellar phases and to the literature data for transfer from water to octane. The role of the hydrophilic interactions between OH group and the micellar head groups and of the hydrophobic interactions between the methylene group and its apolar environment is evidenced.
Journal of Solution Chemistry | 1987
R. De Lisi; S. Milioto
Heat capacities of the ternary systems water-dodecyltrimethylammonium bromide (DTAB)-butanol and water-DTAB-pentanol were measured at 25°C. The standard partial molar heat capacities of pentanol in micellar solutions show a maximum at about 0.35 mol-kg−1 DTAB that has been attributed to a micellar structural transition. This maximum tends to vanish by increasing the alcohol concentration and by decreasing the alcohol alkyl chain length; in the case of butanol it was not detected. The behavior of the standard partial molar heat capacities of alcohols in micellar solutions in the region above the cmc and below the structural transition was explained using a previously reported mass-action model for the alcohol distribution between the aqueous and the micellar phase and the pseudophase transition model for micellization. In the resulting equation the contributions due to the temperature effect on the shift of both the micellization equilibrium and the distribution are shown to be negligible so that only the distribution effect and the shift of the micellization equilibrium due to the added alcohol remain. The distribution constant and the partial molar heat capacities of alcohols in the aqueous and micellar phases have been derived by linear regression. The distribution constant for both alcohols agree well with those previously obtained using different techniques. Since the best fit below the structural transition correlates as well with the experimental points above the structural transition, it seems that no difference exists in the standard partial molar heat capacities of alcohols in the two shapes of the micelles. Also, from the present data and those for alkanols in sodium dodecylsulfate reported in the literature it seems that the standard heat capacity of alcohols in the micellar phase does not depend on both the alcohol alkyl chain length and the nature of the hydrophilic moiety of the head group of the micelles.
Journal of Solution Chemistry | 1990
R. De Lisi; E. Fisicaro; S. Milioto; E. Pelizzetti; P. Savarino
Densities, heat capacities and enthalpies of dilution at 25°C and osmotic coefficients at 37°C were measured for N-octyl- and N-dodecylnicotinamide chlorides in water over an extended concentration region. Partial molar volumes, heat capacities, relative enthalpies and nonideal free energies and entropies at 25°C were derived as a function of the surfactant concentration. For both surfactants, plots of volumes, enthalpies and free energies vs. concentration are regular whereas those of heat capacities and entropies present anomalies at about 0.8 and 0.1m for the octyl and dodecyl compounds, respectively. Changes in the slope of a plot of osmotic coefficients times molality vs. molality were also observed at these same concentrations. These peculiarities are ascribed to micelle structural transitions. The nonideal free energies do not seem to depend on the alkyl chain length when they are plotted vs. m/Ccmc. Also, a plot of the nonideal free energy vs. logm/Ccmc is roughly independent of the nature of the surfactant because of the constant activity of surfactants in micellar solutions. Nonideal free energies, enthalpies and entropies have been calculated at 15 and 35°C. At each concentration the nonideal free energy is temperature independent as a result of a compensatory effect between enthalpy and entropy. The thermodynamic functions of micellization were graphically evaluated on the basis of the pseudo-phase transition model. These data suggest that the nicotinamide group possesses less hydrophilic character than the ammonium group.