R. DeVoe
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. DeVoe.
Nature | 2014
E. Beauchamp; D. Beck; V. Belov; C. Benitez-Medina; J. Bonatt; M. Breidenbach; T. Brunner; A. Burenkov; C. Chambers; J. Chaves; B. Cleveland; M. Coon; A. Craycraft; T. Daniels; M. Danilov; J. Davis; R. DeVoe; S. Delaquis; A. Dolgolenko; M. Dunford; J. Farine; W. Feldmeier; P. Fierlinger; D. Fudenberg; G. Giroux; R. Gornea; K. Graham; G. Gratta; S. Herrin; M. Hughes
Many extensions of the standard model of particle physics suggest that neutrinos should be Majorana-type fermions—that is, that neutrinos are their own anti-particles—but this assumption is difficult to confirm. Observation of neutrinoless double-β decay (0νββ), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with 76Ge (the GERDA experiment) and 136Xe (the KamLAND-Zen and EXO (Enriched Xenon Observatory)-200 experiments) have established the lifetime of this decay to be longer than 1025 years, corresponding to a limit on the neutrino mass of 0.2–0.4 electronvolts. Here we report new results from EXO-200 based on a large 136Xe exposure that represents an almost fourfold increase from our earlier published data sets. We have improved the detector resolution and revised the data analysis. The half-life sensitivity we obtain is 1.9 × 1025 years, an improvement by a factor of 2.7 on previous EXO-200 results. We find no statistically significant evidence for 0νββ decay and set a half-life limit of 1.1 × 1025 years at the 90 per cent confidence level. The high sensitivity holds promise for further running of the EXO-200 detector and future 0νββ decay searches with an improved Xe-based experiment, nEXO.
Physical Review Letters | 2012
M. Auger; A. P. Waite; W. Feldmeier; T. N. Johnson; M. Hughes; P. C. Rowson; A. Kuchenkov; J. D. Wright; J.-L. Vuilleumier; T. Walton; K. Graham; C. G. Davis; A. Pocar; David A. Sinclair; K. Hall; A. Odian; S. Delaquis; K.S. Kumar; L. J. Kaufman; R. MacLellan; K. Twelker; M. Breidenbach; R. DeVoe; A. Burenkov; G. Giroux; S. Herrin; A. Sabourov; T. Brunner; P. Vogel; L. Yang
We report on a search for neutrinoless double-beta decay of 136Xe with EXO-200. No signal is observed for an exposure of 32.5 kg yr, with a background of ∼1.5×10(-3) kg(-1) yr(-1) keV(-1) in the ±1σ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay T(1/2)(0νββ)(136Xe)>1.6×10(25) yr (90% C.L.), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.
Physical Review Letters | 2012
M. Auger; D. J. Auty; P. S. Barbeau; E. Beauchamp; V. Belov; C. Benitez-Medina; M. Breidenbach; T. Brunner; A. Burenkov; B. Cleveland; S. Cook; T. Daniels; M. Danilov; C. G. Davis; S. Delaquis; R. DeVoe; A. Dobi; M. J. Dolinski; A. Dolgolenko; M. Dunford; W. Fairbank; J. Farine; W. Feldmeier; P. Fierlinger; D. Franco; G. Giroux; R. Gornea; K. Graham; G. Gratta; C. Hall
We report on a search for neutrinoless double-beta decay of 136Xe with EXO-200. No signal is observed for an exposure of 32.5 kg yr, with a background of ∼1.5×10(-3) kg(-1) yr(-1) keV(-1) in the ±1σ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay T(1/2)(0νββ)(136Xe)>1.6×10(25) yr (90% C.L.), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.
Physical Review Letters | 2009
R. DeVoe
Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.
Journal of Instrumentation | 2012
M. Auger; D. J. Auty; P.S. Barbeau; L. Bartoszek; E. Baussan; E. Beauchamp; C. Benitez-Medina; M. Breidenbach; D. Chauhan; B. Cleveland; R. Conley; J. Cook; S. Cook; A. Coppens; W.W. Craddock; T. Daniels; C. G. Davis; J. Davis; R. DeVoe; A. Dobi; M. J. Dolinski; M. Dunford; W. Fairbank; J. Farine; P. Fierlinger; D. Franco; G. Giroux; R. Gornea; K. Graham; G. Gratta
EXO-200 is an experiment designed to search for double beta decay of 136Xe with a single-phase, liquid xenon detector. It uses an active mass of 110 kg of xenon enriched to 80.6% in the isotope 136 in an ultra-low background time projection chamber capable of simultaneous detection of ionization and scintillation. This paper describes the EXO-200 detector with particular attention to the most innovative aspects of the design that revolve around the reduction of backgrounds, the efficient use of the expensive isotopically enriched xenon, and the optimization of the energy resolution in a relatively large volume.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2009
R. Neilson; F. LePort; A. Pocar; K.S. Kumar; A. Odian; C.Y. Prescott; V. Tenev; Nicole Ackerman; D. Akimov; M. Auger; C. Benitez-Medina; M. Breidenbach; A. Burenkov; R. Conley; S. Cook; R. DeVoe; M. J. Dolinski; W. Fairbank; J. Farine; P. Fierlinger; B. Flatt; R. Gornea; G. Gratta; M. P. Green; C. Hall; K. Hall; D. Hallman; C. Hargrove; S. Herrin; J. Hodgson
EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-lowbackground liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169 K—the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.
Physical Review C | 2013
J. B. Albert; M. Auger; D. J. Auty; P. S. Barbeau; E. Beauchamp; D. Beck; V. Belov; C. Benitez-Medina; J. Bonatt; M. Breidenbach; T. Brunner; A. Burenkov; G. F. Cao; C. Chambers; J. Chaves; B. T. Cleveland; S. Cook; T. Daniels; M. Danilov; S. J. Daugherty; C. G. Davis; James G. Davis; S. Delaquis; R. DeVoe; A. Dobi; M. J. Dolinski; A. Dolgolenko; M. Dunford; W. Fairbank; J. Farine
We report on an improved measurement of the 2\nu \beta \beta\ half-life of Xe-136 performed by EXO-200. The use of a large and homogeneous time projection chamber allows for the precise estimate of the fiducial mass used for the measurement, resulting in a small systematic uncertainty. We also discuss in detail the data analysis methods used for double-beta decay searches with EXO-200, while emphasizing those directly related to the present measurement. The Xe-136 2\nu \beta \beta\ half-life is found to be 2.165 +- 0.016 (stat) +- 0.059 (sys) x 10^21 years. This is the most precisely measured half-life of any 2\nu \beta \beta\ decay to date.
IEEE Transactions on Nuclear Science | 2015
I. Ostrovskiy; F. Retiere; D. Auty; J. Dalmasson; T. Didberidze; R. DeVoe; G. Gratta; L. Huth; L. James; L. Lupin-Jimenez; N. Ohmart; A. Piepke
Silicon Photomultipliers (SiPMs) are attractive candidates for light detectors for next generation liquid xenon double-beta decay experiments, like nEXO (next Enriched Xenon Observatory). In this paper we discuss the requirements that the SiPMs must satisfy in order to be suitable for nEXO and similar experiments, describe the two test setups operated by the nEXO collaboration, and present the results of characterization of SiPMs from several vendors. In particular, we find that the photon detection efficiency at the peak of xenon scintillation light emission (175-178 nm) approaches the nEXO requirements for tested FBK and Hamamatsu devices. Additionally, the nEXO collaboration performed radio-assay of several grams of bare FBK devices using neutron activation analysis, indicating levels of 40K, 232Th, and 238U of the order of <; 0.15, (6.9 · 10- 4 - 1.3 · 10- 2), and <; 0.11 mBq/kg, respectively.
Physical Review A | 2007
M. P. Green; J. Wodin; R. DeVoe; P. Fierlinger; B. Flatt; G. Gratta; F. LePort; M. Montero Díez; R. Neilson; K. O'Sullivan; A. Pocar; S. Waldman; D.S. Leonard; A. Piepke; U Alabama; C. Hargrove; D. Sinclair; V. Strickland; U Carleton; W. Fairbank; K. Hall; B. Mong; M. K. Moe; U Laurentian; U Neuchatel
Individual Ba ions are trapped in a gas-filled linear ion trap and observed with a high signal-to-noise ratio by resonance fluorescence. Single-ion storage times of {approx}5 min ({approx}1 min) are achieved using He (Ar) as a buffer gas at pressures in the range 8x10{sup -5}-4x10{sup -3} torr. Trap dynamics in buffer gases are experimentally studied in the simple case of single ions. In particular, the cooling effects of light gases such as He and Ar and the destabilizing properties of heavier gases such as Xe are studied. A simple model is offered to explain the observed phenomenology.
International Journal of Mass Spectrometry | 2015
T. Brunner; D. Fudenberg; V.L. Varentsov; A. Sabourov; G. Gratta; J. Dilling; R. DeVoe; David A. Sinclair; W. Fairbank; J. B. Albert; D. J. Auty; P.S. Barbeau; D. Beck; C. Benitez-Medina; M. Breidenbach; G. F. Cao; C. Chambers; B. Cleveland; M. Coon; A. Craycraft; T. Daniels; S. J. Daugherty; T. Didberidze; M. J. Dolinski; M. Dunford; L. Fabris; J. Farine; W. Feldmeier; P. Fierlinger; R. Gornea
An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into a vacuum (10(-6) mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting Ba-136 ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to simulations. This demonstration of extraction of ions, with mass comparable to that of the gas generating the high-pressure, has applications to Ba tagging from a Xe-gas time-projection chamber for double-beta decay, as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m > 40 u) carrier gas