Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. E. Ergun is active.

Publication


Featured researches published by R. E. Ergun.


Space Science Reviews | 1995

A three-dimensional plasma and energetic particle investigation for the wind spacecraft

Robert P. Lin; K. A. Anderson; S. Ashford; Charles W. Carlson; D. W. Curtis; R. E. Ergun; D. Larson; J. P. McFadden; Michael P. McCarthy; G. K. Parks; H. Rème; J. M. Bosqued; J. Coutelier; F. Cotin; C. d'Uston; K. P. Wenzel; T. R. Sanderson; J. P. G. Henrion; J. C. Ronnet; G. Paschmann

This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earths magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above ∼20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to ∼1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of ΔE/E≈0.3 and angular resolution of 22.5°×36°, and full 4π steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from ∼3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, ΔE/E≈0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4π steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.


Geophysical Research Letters | 1998

FAST satellite observations of large‐amplitude solitary structures

R. E. Ergun; C. W. Carlson; J. P. McFadden; F. S. Mozer; G. T. Delory; W. Peria; C. C. Chaston; M. Temerin; I. Roth; L. Muschietti; R. C. Elphic; Robert J. Strangeway; R. F. Pfaff; C. A. Cattell; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; L. M. Kistler

We report observations of “fast solitary waves” that are ubiquitous in downward current regions of the mid-altitude auroral zone. The single-period structures have large amplitudes (up to 2.5 V/m), travel much faster than the ion acoustic speed, carry substantial potentials (up to ∼100 Volts), and are associated with strong modulations of energetic electron fluxes. The amplitude and speed of the structures distinguishes them from ion-acoustic solitary waves or weak double layers. The electromagnetic signature appears to be that of an positive charge (electron hole) traveling anti-earthward. We present evidence that the structures are in or near regions of magnetic-field-aligned electric fields and propose that these nonlinear structures play a key role in supporting parallel electric fields in the downward current region of the auroral zone.


Geophysical Research Letters | 1998

FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating

C. W. Carlson; J. P. McFadden; R. E. Ergun; M. Temerin; W. Peria; F. S. Mozer; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; R. C. Elphic; Robert J. Strangeway; C. A. Cattell; R. F. Pfaff

Observations of plasma particles and fields by the FAST satellite find evidence of acceleration of intense upgoing electron beams by quasi-static parallel electric fields. The beam characteristics include a broad energy spectrum with peak energies between 100 eV and 5 keV, perpendicular temperatures less than 1 eV, and fluxes greater than 109/cm²sec. Diverging electrostatic shocks associated with the beams have integrated potentials that match the beam energy. These beams are found in regions of downward Birkeland current and account for the total field-aligned current when they are present. The most energetic ion conics in the auroral zone are found coincident with these beams, in agreement with the model for “trapped” conics. The measured particle densities of the electron beams and associated ion conics are approximately equal and typically range from 1 to 10 cm−3, with no evidence for additional cold density. The beams are seen frequently at altitudes between 2000 and 4000 km in the winter auroral zone. Their probability of occurrence has a strong dependence on season and altitude and is similar to that for upgoing ion beams in the adjacent upward current regions. This similarity suggests that the density and scale height of ionospheric ions play an important role in the formation of both types of beams.


Geophysical Research Letters | 1998

FAST satellite observations of electric field structures in the auroral zone

R. E. Ergun; C. W. Carlson; J. P. McFadden; F. S. Mozer; G. T. Delory; W. Peria; C. C. Chaston; M. Temerin; R. C. Elphic; Robert J. Strangeway; R. F. Pfaff; C. A. Cattell; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; L. M. Kistler

Electric field and energetic particle observations by the Fast Auroral Snapshot (FAST) satellite provide convincing evidence of particle acceleration by quasi-static, magnetic-field-aligned (parallel) electric fields in both the upward and downward current regions of the auroral zone. We demonstrate this by comparing the inferred parallel potentials of electrostatic shocks with particle energies. We also report nonlinear electric field structures which may play a role in supporting parallel electric fields. These structures include large-amplitude ion cyclotron waves in the upward current region, and intense, spiky electric fields in the downward current region. The observed structures had substantial parallel components and correlative electron flux modulations. Observations of parallel electric fields in two distinct plasmas suggest that parallel electric fields may be a fundamental particle acceleration mechanism in astrophysical plasmas.


Geophysical Research Letters | 2009

Kinetic structure of the sharp injection/dipolarization front in the flow-braking region

V. A. Sergeev; V. Angelopoulos; S. Apatenkov; J. W. Bonnell; R. E. Ergun; R. Nakamura; J. P. McFadden; D. Larson; A. Runov

[1] Observations of three closely-spaced THEMIS spacecraft at 9-11 Re near midnight and close to the neutral sheet are used to investigate a sharp injection/ dipolarization front (SDF) propagating inward in the flow-braking region. This SDF was a very thin current sheet along the North-South direction embedded within an Earthward-propagating flow burst. A short-lived depression of the total magnetic field (down to 1 nT), devoid of wave activity and intense particle fluxes, stays ahead of the SDF. Clear finite proton gyroradius effects, which help visualize the geometry and sub-gyroscale of the SDF, are seen centered at the thin current sheet. The SDF nearly coincides with the narrow interface between plasmas of different densities and temperatures. At that interface, we observed strong (40―60 mV/m peak) E-field bursts of the lower-hybrid time scale that are confined to a localized region of density depletions. This sharp dipolarization/injection front propagating in the flow-braking region appears to be a complicated kinetic-scale plasma structure that combines a number of small-scale elements (Bz drops, thin current sheets, LH cavities, injection fronts) previously discussed as separate objects.


Science | 2016

Electron-Scale Measurements of Magnetic Reconnection in Space

J. L. Burch; R. B. Torbert; T. D. Phan; L. J Chen; T. E. Moore; R. E. Ergun; J. P. Eastwood; D. J. Gershman; P. A. Cassak; M. R. Argall; Sheng-Hsiang Wang; Michael Hesse; C. J. Pollock; B. L. Giles; R. Nakamura; B. H. Mauk; S. A. Fuselier; C. T. Russell; R. J. Strangeway; J. F. Drake; M. A. Shay; Yu. V. Khotyaintsev; Per-Arne Lindqvist; Göran Marklund; F. D. Wilder; D. T. Young; K. Torkar; J. Goldstein; J. C. Dorelli; L. A. Avanov

Probing magnetic reconnection in space Magnetic reconnection occurs when the magnetic field permeating a conductive plasma rapidly rearranges itself, releasing energy and accelerating particles. Reconnection is important in a wide variety of physical systems, but the details of how it occurs are poorly understood. Burch et al. used NASAs Magnetospheric Multiscale mission to probe the plasma properties within a reconnection event in Earths magnetosphere (see the Perspective by Coates). They find that the process is driven by the electron-scale dynamics. The results will aid our understanding of magnetized plasmas, including those in fusion reactors, the solar atmosphere, solar wind, and the magnetospheres of Earth and other planets. Science, this issue p. 10.1126/science.aaf2939; see also p. 1176 Magnetic reconnection is driven by the electron-scale dynamics occurring within magnetized plasmas. INTRODUCTION Magnetic reconnection is a physical process occurring in plasmas in which magnetic energy is explosively converted into heat and kinetic energy. The effects of reconnection—such as solar flares, coronal mass ejections, magnetospheric substorms and auroras, and astrophysical plasma jets—have been studied theoretically, modeled with computer simulations, and observed in space. However, the electron-scale kinetic physics, which controls how magnetic field lines break and reconnect, has up to now eluded observation. RATIONALE To advance understanding of magnetic reconnection with a definitive experiment in space, NASA developed and launched the Magnetospheric Multiscale (MMS) mission in March 2015. Flying in a tightly controlled tetrahedral formation, the MMS spacecraft can sample the magnetopause, where the interplanetary and geomagnetic fields reconnect, and make detailed measurements of the plasma environment and the electric and magnetic fields in the reconnection region. Because the reconnection dissipation region at the magnetopause is thin (a few kilometers) and moves rapidly back and forth across the spacecraft (10 to 100 km/s), high-resolution measurements are needed to capture the microphysics of reconnection. The most critical measurements are of the three-dimensional electron distributions, which must be made every 30 ms, or 100 times the fastest rate previously available. RESULTS On 16 October 2015, the MMS tetrahedron encountered a reconnection site on the dayside magnetopause and observed (i) the conversion of magnetic energy to particle kinetic energy; (ii) the intense current and electric field that causes the dissipation of magnetic energy; (iii) crescent-shaped electron velocity distributions that carry the current; and (iv) changes in magnetic topology. The crescent-shaped features in the velocity distributions (left side of the figure) are the result of demagnetization of solar wind electrons as they flow into the reconnection site, and their acceleration and deflection by an outward-pointing electric field that is set up at the magnetopause boundary by plasma density gradients. As they are deflected in these fields, the solar wind electrons mix in with magnetospheric electrons and are accelerated along a meandering path that straddles the boundary, picking up the energy released in annihilating the magnetic field. As evidence of the predicted interconnection of terrestrial and solar wind magnetic fields, the crescent-shaped velocity distributions are diverted along the newly connected magnetic field lines in a narrow layer just at the boundary. This diversion along the field is shown in the right side of the figure. CONCLUSION MMS has yielded insights into the microphysics underlying the reconnection between interplanetary and terrestrial magnetic fields. The persistence of the characteristic crescent shape in the electron distributions suggests that the kinetic processes causing magnetic field line reconnection are dominated by electron dynamics, which produces the electric fields and currents that dissipate magnetic energy. The primary evidence for this magnetic dissipation is the appearance of an electric field and a current that are parallel to one another and out of the plane of the figure. MMS has measured this electric field and current, and has identified the important role of electron dynamics in triggering magnetic reconnection. Electron dynamics controls the reconnection between the terrestrial and solar magnetic fields. The process of magnetic reconnection has been a long-standing mystery. With fast particle measurements, NASA’s Magnetospheric Multiscale (MMS) mission has measured how electron dynamics controls magnetic reconnection. The data in the circles show electrons with velocities from 0 to 104 km/s carrying current out of the page on the left side of the X-line and then flowing upward and downward along the reconnected magnetic field on the right side. The most intense fluxes are red and the least intense are blue. The plot in the center shows magnetic field lines and out-of-plane currents derived from a numerical plasma simulation using the parameters observed by MMS. Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA’s Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth’s magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.


Science | 2010

Identifying the Driver of Pulsating Aurora

Y. Nishimura; J. Bortnik; Wenya Li; Richard M. Thorne; L. R. Lyons; V. Angelopoulos; S. B. Mende; J. W. Bonnell; O. Le Contel; C. M. Cully; R. E. Ergun; U. Auster

Auroral Chorus Energetic particles that arrive from near-Earth space produce photon emissions—the aurora—as they bombard the atmosphere in the polar regions. The pulsating aurora, which is characterized by temporal intensity variations, is thought to be caused by modulations in electron precipitation possibly produced by resonance with electromagnetic waves in Earths magnetosphere. Nishimura et al. (p. 81) present a detailed study of an event that showed a good correlation between the temporal changes in auroral luminosity and chorus emission—a type of electromagnetic wave occurring in Earths magnetosphere. The results points to chorus waves as the driver of the pulsating aurora. Correlations are found between aurora light intensity and a type of electromagnetic wave in Earth’s magnetosphere. Pulsating aurora, a spectacular emission that appears as blinking of the upper atmosphere in the polar regions, is known to be excited by modulated, downward-streaming electrons. Despite its distinctive feature, identifying the driver of the electron precipitation has been a long-standing problem. Using coordinated satellite and ground-based all-sky imager observations from the THEMIS mission, we provide direct evidence that a naturally occurring electromagnetic wave, lower-band chorus, can drive pulsating aurora. Because the waves at a given equatorial location in space correlate with a single pulsating auroral patch in the upper atmosphere, our findings can also be used to constrain magnetic field models with much higher accuracy than has previously been possible.


Geophysical Research Letters | 1998

FAST satellite wave observations in the AKR source region

R. E. Ergun; C. W. Carlson; J. P. McFadden; F. S. Mozer; G. T. Delory; W. Peria; C. C. Chaston; M. Temerin; R. C. Elphic; Robert J. Strangeway; R. F. Pfaff; C. A. Cattell; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; L. M. Kistler

The Fast Auroral SnapshoT (FAST) satellite has made observations in the Auroral Kilometric Radiation (AKR) source region with unprecedented frequency and time resolution. We confirm the AKR source is in a density depleted cavity and present examples in which cold electrons appeared to have been nearly evacuated (nhot> ncold). Electron distributions were depleted at low-energies and up-going ion beams were always present. Source region amplitudes were far greater than previously reported, reaching 2×10−4 (V/m)²/Hz (300 mV/m) in short bursts with bandwidths generally <1 kHz. Intense emissions were often at the edge of the density cavity. Emissions were near or below the cold plasma electron cyclotron frequency in the source region, and were almost entirely electromagnetic. The |E|/|B| ratio was constant as a function of frequency and rarely displayed any features that would identify a cold plasma cutoff or resonance.


Geophysical Research Letters | 1997

Tracing the topology of the October 18–20, 1995, magnetic cloud with ∼0.1–10² keV electrons

D. Larson; R. P. Lin; James M. McTiernan; J. P. McFadden; R. E. Ergun; Michael P. McCarthy; H. Rème; T. R. Sanderson; M. L. Kaiser; R. P. Lepping; J. E. Mazur

Five solar impulsive ∼1–10² keV electron events were detected while the WIND spacecraft was inside the magnetic cloud observed upstream of the Earth on October 18–20, 1995. The solar type III radio bursts produced by these electrons can be directly traced from ∼1 AU back to X-ray flares in solar active region AR 7912, implying that at least one leg of the cloud was magnetically connected to that region. Analysis of the electron arrival times shows that the lengths of magnetic field lines in that leg vary from ∼3 AU near the cloud exterior to ∼1.2 AU near the cloud center, consistent with a model force-free helical flux rope. Although the cloud magnetic field exhibits the smooth, continuous rotation signature of a helical flux rope, the ∼0.1-1 keV heat flux electrons and ∼1–10² keV energetic electrons show numerous simultaneous abrupt changes from bidirectional streaming to unidirectional streaming to complete flux dropouts. We interpret these as evidence for patchy disconnection of one end or both ends of cloud magnetic field lines from the Sun.


Geophysical Research Letters | 1999

Modulated electron-acoustic waves in auroral density cavities : FAST observations

R. Pottelette; R. E. Ergun; R. A. Treumann; M. Berthomier; C. W. Carlson; J. P. McFadden; I. Roth

We report on FAST observations of large amplitude (up to 500 mV m−1) envelope solitary waves at the edges of the AKR source region. These edges are characterized by the presence of two electron populations: a dominant hot (∼keV) component and a minority cold (<60 eV) component. The nonlinear waves are recorded when the spacecraft passes the base of the parallel auroral acceleration region. They form intense packets of electron acoustic waves. The modulation is due to ion acoustic waves. These structures are electrostatic and propagate along the magnetic field at speeds of a few 100 km s−1. They may play a crucial role in the acceleration processes taking place in these regions.

Collaboration


Dive into the R. E. Ergun's collaboration.

Top Co-Authors

Avatar

J. L. Burch

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

C. T. Russell

University of California

View shared research outputs
Top Co-Authors

Avatar

R. B. Torbert

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

B. L. Giles

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. W. Carlson

University of California

View shared research outputs
Top Co-Authors

Avatar

J. P. McFadden

University of California

View shared research outputs
Top Co-Authors

Avatar

C. J. Pollock

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. C. Dorelli

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

P.-A. Lindqvist

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge