Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. E. Fisher is active.

Publication


Featured researches published by R. E. Fisher.


Geophysical Research Letters | 2009

Escape of methane gas from the seabed along the West Spitsbergen continental margin

Graham K. Westbrook; Kate E. Thatcher; Eelco J. Rohling; Alexander M. Piotrowski; Heiko Pälike; Anne H. Osborne; Euan G. Nisbet; Timothy A. Minshull; M. Lanoisellé; Rachael H. James; Veit Hühnerbach; Darryl R. H. Green; R. E. Fisher; Anya J. Crocker; Anne Chabert; Clara T. Bolton; Agnieszka Beszczynska-Möller; Christian Berndt; Alfred Aquilina

More than 250 plumes of gas bubbles have been discovered emanating from the seabed of the West Spitsbergen continental margin, in a depth range of 150-400 m, at and above the present upper limit of the gas hydrate stability zone (GHSZ). Some of the plumes extend upward to within 50 m of the sea surface. The gas is predominantly methane. Warming of the northward-flowing West Spitsbergen current by 1°C over the last thirty years is likely to have increased the release of methane from the seabed by reducing the extent of the GHSZ, causing the liberation of methane from decomposing hydrate. If this process becomes widespread along Arctic continental margins, tens of Teragrams of methane per year could be released into the ocean.


Philosophical Transactions of the Royal Society A | 2011

Global atmospheric methane: budget, changes and dangers

E. J. Dlugokencky; Euan G. Nisbet; R. E. Fisher; D. Lowry

A factor of 2.5 increase in the global abundance of atmospheric methane (CH4) since 1750 contributes 0.5 Wm−2 to total direct radiative forcing by long-lived greenhouse gases (2.77 Wm−2 in 2009), while its role in atmospheric chemistry adds another approximately 0.2 Wm−2 of indirect forcing. Since CH4 has a relatively short lifetime and it is very close to a steady state, reductions in its emissions would quickly benefit climate. Sensible emission mitigation strategies require quantitative understanding of CH4’s budget of emissions and sinks. Atmospheric observations of CH4 abundance and its rate of increase, combined with an estimate of the CH4 lifetime, constrain total global CH4 emissions to between 500 and 600 Tg CH4 yr−1. While total global emissions are constrained reasonably well, estimates of emissions by source sector vary by up to a factor of 2. Current observation networks are suitable to constrain emissions at large scales (e.g. global) but not at the regional to national scales necessary to verify emission reductions under emissions trading schemes. Improved constraints on the global CH4 budget and its break down of emissions by source sector and country will come from an enhanced observation network for CH4 abundance and its isotopic composition (δ13C, δD (D=2H) and δ14C). Isotopic measurements are a valuable tool in distinguishing among various sources that contribute emissions to an air parcel, once fractionation by loss processes is accounted for. Isotopic measurements are especially useful at regional scales where signals are larger. Reducing emissions from many anthropogenic source sectors is cost-effective, but these gains may be cancelled, in part, by increasing emissions related to economic development in many parts of the world. An observation network that can quantitatively assess these changing emissions, both positive and negative, is required, especially in the context of emissions trading schemes.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Emission of methane from plants

R.E.R Nisbet; R. E. Fisher; R.H Nimmo; Derek S. Bendall; Patrick M. Crill; Angela V. Gallego-Sala; E. R. C. Hornibrook; Enrique López-Juez; D. Lowry; P.B.R Nisbet; E.F Shuckburgh; Srimathy Sriskantharajah; Christopher J. Howe; Euan G. Nisbet

It has been proposed that plants are capable of producing methane by a novel and unidentified biochemical pathway. Emission of methane with an apparently biological origin was recorded from both whole plants and detached leaves. This was the first report of methanogenesis in an aerobic setting, and was estimated to account for 10–45 per cent of the global methane source. Here, we show that plants do not contain a known biochemical pathway to synthesize methane. However, under high UV stress conditions, there may be spontaneous breakdown of plant material, which releases methane. In addition, plants take up and transpire water containing dissolved methane, leading to the observation that methane is released. Together with a new analysis of global methane levels from satellite retrievals, we conclude that plants are not a major source of the global methane production.


Geophysical Research Letters | 2011

Arctic methane sources: Isotopic evidence for atmospheric inputs

R. E. Fisher; Srimathy Sriskantharajah; D. Lowry; M. Lanoisellé; Cathrine Fowler; Rachael H. James; Ove Hermansen; C. Lund Myhre; Andreas Stohl; Jens Greinert; P. B. R. Nisbet-Jones; Jürgen Mienert; Euan G. Nisbet

By comparison of the methane mixing ratio and the carbon isotope ratio (δ13CCH4) in Arctic air with regional background, the incremental input of CH4 in an air parcel and the source δ13CCH4 signature can be determined. Using this technique the bulk Arctic CH4 source signature of air arriving at Spitsbergen in late summer 2008 and 2009 was found to be −68‰, indicative of the dominance of a biogenic CH4 source. This is close to the source signature of CH4 emissions from boreal wetlands. In spring, when wetland was frozen, the CH4 source signature was more enriched in 13C at −53 ± 6‰ with air mass back trajectories indicating a large influence from gas field emissions in the Ob River region. Emissions of CH4 to the water column from the seabed on the Spitsbergen continental slope are occurring but none has yet been detected reaching the atmosphere. The measurements illustrate the significance of wetland emissions. Potentially, these may respond quickly and powerfully to meteorological variations and to sustained climate warming.


Journal of Geophysical Research | 2010

Inverse modeling of European CH4 emissions 2001-2006

P. Bergamaschi; M. Krol; Jan Fokke Meirink; F. Dentener; Arjo Segers; J. van Aardenne; Suvi Monni; Alex Vermeulen; Martina Schmidt; Michel Ramonet; C. Yver; F. Meinhardt; Euan G. Nisbet; R. E. Fisher; Simon O'Doherty; E. J. Dlugokencky

European CH4 emissions are estimated for the period 2001-2006 using a four-dimensional variational (4DVAR) inverse modeling system, based on the atmospheric zoom model TM5. Continuous observations are used from various European monitoring stations, complemented by European and global flask samples from the NOAA/ESRL network. The available observations mainly provide information on the emissions from northwest Europe (NWE), including the UK, Ireland, the BENELUX countries, France and Germany. The inverse modeling estimates for the total anthropogenic emissions from NWE are 21% higher compared to the EDGARv4.0 emission inventory and 40% higher than values reported to U.N. Framework Convention on Climate Change. Assuming overall uncertainties on the order of 30% for both bottom-up and top-down estimates, all three estimates can be still considered to be consistent with each other. However, the uncertainties in the uncertainty estimates prevent us from verifying (or falsifying) the bottom-up inventories in a strict sense. Sensitivity studies show some dependence of the derived spatial emission patterns on the set of atmospheric monitoring stations used, but the total emissions for the NWE countries appear to be relatively robust. While the standard inversions include a priori information on the spatial and temporal emission patterns from bottom-up inventories, a further sensitivity inversion without this a priori information results in very similar NWE country totals, demonstrating that the available observations provide significant constraints on the emissions from the NWE countries independent from bottom-up inventories.


Global Biogeochemical Cycles | 2016

Rising atmospheric methane: 2007-2014 growth and isotopic shift

Euan G. Nisbet; E. J. Dlugokencky; Martin R. Manning; D. Lowry; R. E. Fisher; Sylvia E. Michel; J. B. Miller; James W. C. White; Bruce H. Vaughn; P. Bousquet; J. A. Pyle; N. J. Warwick; M. Cain; Rebecca Brownlow; G. Zazzeri; M. Lanoisellé; Andrew C. Manning; Emanuel Gloor; Douglas E. J. Worthy; E.-G. Brunke; C. Labuschagne; Eric W. Wolff; Anita L. Ganesan

From 2007 to 2013, the globally averaged mole fraction of methane in the atmosphere increased by 5.7 ± 1.2 ppb yr−1. Simultaneously, δ13CCH4 (a measure of the 13C/12C isotope ratio in methane) has shifted to significantly more negative values since 2007. Growth was extreme in 2014, at 12.5 ± 0.4 ppb, with a further shift to more negative values being observed at most latitudes. The isotopic evidence presented here suggests that the methane rise was dominated by significant increases in biogenic methane emissions, particularly in the tropics, for example, from expansion of tropical wetlands in years with strongly positive rainfall anomalies or emissions from increased agricultural sources such as ruminants and rice paddies. Changes in the removal rate of methane by the OH radical have not been seen in other tracers of atmospheric chemistry and do not appear to explain short-term variations in methane. Fossil fuel emissions may also have grown, but the sustained shift to more 13C-depleted values and its significant interannual variability, and the tropical and Southern Hemisphere loci of post-2007 growth, both indicate that fossil fuel emissions have not been the dominant factor driving the increase. A major cause of increased tropical wetland and tropical agricultural methane emissions, the likely major contributors to growth, may be their responses to meteorological change.


Journal of Geophysical Research | 2015

Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard

Carolyn Graves; Lea Steinle; Gregor Rehder; Helge Niemann; Douglas P. Connelly; D. Lowry; R. E. Fisher; Andrew W. Stott; Heiko Sahling; Rachael H. James

Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ∼400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ∼60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at <100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ∼4–20 μmol m−2 d−1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source.


Geophysical Research Letters | 2016

Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere

C. Lund Myhre; Benedicte Ferre; S. M. Platt; Anna Silyakova; Ove Hermansen; G. Allen; I. Pisso; Norbert Schmidbauer; Andreas Stohl; Joseph Pitt; Pär Jansson; J. Greinert; Carl J. Percival; A. M. Fjaeraa; Sebastian O'Shea; Martin Gallagher; M. Le Breton; Keith N. Bower; S. J.-B. Bauguitte; Stig B. Dalsøren; Sunil Vadakkepuliyambatta; R. E. Fisher; Euan G. Nisbet; D. Lowry; Gunnar Myhre; J. A. Pyle; M. Cain; Jürgen Mienert

We find that summer methane (CH4) release from seabed sediments west of Svalbard substantially increases CH4 concentrations in the ocean but has limited influence on the atmospheric CH4 levels. Our conclusion stems from complementary measurements at the seafloor, in the ocean, and in the atmosphere from land-based, ship and aircraft platforms during a summer campaign in 2014. We detected high concentrations of dissolved CH4 in the ocean above the seafloor with a sharp decrease above the pycnocline. Model approaches taking potential CH4 emissions from both dissolved and bubble-released CH4 from a larger region into account reveal a maximum flux compatible with the observed atmospheric CH4 mixing ratios of 2.4–3.8 nmol m−2 s−1. This is too low to have an impact on the atmospheric summer CH4 budget in the year 2014. Long-term ocean observatories may shed light on the complex variations of Arctic CH4 cycles throughout the year.


Tellus B | 2012

Stable carbon isotope signatures of methane from a Finnish subarctic wetland

Srimathy Sriskantharajah; R. E. Fisher; D. Lowry; Tuula Aalto; Juha Hatakka; Mika Aurela; Tuomas Laurila; Annalea Lohila; E. Kuitunen; Euan G. Nisbet

ABSTRACT Methane emissions from Lompolojänkkä, a Finnish aapa mire within the Arctic Circle, were studied by non-intrusive Keeling plot methods, to place better constraints on the seasonal variations in isotopic signature of methane (δ13CCH4) emitted from Arctic wetland. Air samples were collected in Tedlar bags over the wetland at heights of 42 and 280 cm between May and October 2009 and in August 2008. The mixing ratio and δ13C of the methane in the samples were incorporated into Keeling plot analyses to derive bulk δ13CCH4 signatures for the methane inputs to the air above the wetland. The results show an unexpected consistence in δ13CCH4 from early to late summer, clustered around −68.5±0.7‰, but during spring thaw and autumnal freezing, δ13CCH4 is enriched by approximately 2 and 4‰, respectively. The techniques reported in this paper are simple and economical to employ, and give a bulk source signature for the methane inputs to the air above the entire wetland that can be extrapolated to a larger regional area.


Atmospheric Measurement Techniques | 2016

Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results

Simon Eyer; Béla Tuzson; M. E. Popa; C. J. van der Veen; T. Röckmann; Michael Rothe; Willi A. Brand; R. E. Fisher; D. Lowry; Euan G. Nisbet; M. S. Brennwald; Eliza Harris; C. Zellweger; Lukas Emmenegger; Hubertus Fischer; Joachim Mohn

In situ and simultaneous measurement of the three most abundant isotopologues of methane using midinfrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, μmole mole) methane is 0.1 and 0.5 ‰ for δCand δDCH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δC and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotoperatio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δC-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δCand δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition.

Collaboration


Dive into the R. E. Fisher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Pyle

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

M. Cain

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

G. Allen

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith N. Bower

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge