R. Elwyn Isaac
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Elwyn Isaac.
BioEssays | 2001
Anthony J. Turner; R. Elwyn Isaac; David Coates
Neprilysin (NEP), a thermolysin‐like zinc metalloendopeptidase, plays an important role in turning off peptide signalling events at the cell surface. It is involved in the metabolism of a number of regulatory peptides of the mammalian nervous, cardiovascular, inflammatory and immune systems. Examples include enkephalins, tachykinins, natriuretic and chemotactic peptides. NEP is an integral plasma membrane ectopeptidase of the M13 family of zinc peptidases. Other related mammalian NEP‐like enzymes include the endothelin‐converting enzymes (ECE‐1 and ECE‐2), KELL and PEX. A number of novel mammalian homologues of NEP have also recently been described. NEP family members are potential therapeutic targets, for example in cardiovascular and inflammatory disorders, and potent and selective inhibitors such as phosphoramidon have contributed to understanding enzyme function. Inhibitor design should be facilitated by the recent three‐dimensional structural solution of the NEP–phosphoramidon complex. For several of the family members, however, a well‐defined physiological function or substrate is lacking. Knowledge of the complete genomes of Caenorhabditis elegans and Drosophila melanogaster allows the full complement of NEP‐like activities to be analysed in a single organism. These model organisms also provide convenient systems for examining cell‐specific expression, developmental and functional roles of this peptidase family, and reveal the power of functional genomics. BioEssays 23:261–269, 2001.
Proceedings of the Royal Society of London B: Biological Sciences | 2010
R. Elwyn Isaac; Chenxi Li; Amy E. Leedale; Alan D. Shirras
Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon ‘siesta’. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.
Peptides | 1997
Ronald J. Nachman; R. Elwyn Isaac; Geoffrey M. Coast; G. Mark Holman
Analogues of the insect kinin family in which the Xaa2 residue of the C-terminal pentapeptide core sequence Phe-Xaa1-Xaa2-Trp-Gly-NH2 (Xaa1 = Asn, His, Phe, Ser, or Tyr; Xaa2 = Ala, Ser, or Pro) is replaced with sterically hindered aminoisobutyric acid (Aib) prove to be resistant to hydrolysis by housefly (Musca domestica) angiotensin-converting enzyme (ACE), an endopeptidase capable of hydrolysis and inactivation of the naturally occurring insect kinin peptides. The Aib residue is compatible with formation of turn in the active core region that is important for the biological activity of the insect kinins. One of the Aib-containing analogues, pGlu-Lys-Phe-Phe-Aib-Trp-Gly-NH2, is five- and eightfold more active than the most active endogenous insect kinins in cockroach (Leucophaea maderae) hindgut myotropic and cricket (Acheta domesticus) Malpighian tubule fluid secretion assays, respectively. As the analogue is blocked at both the amino- and the carboxyl-terminus and resistant to an endopeptidase present in insects, it is better adapted than the endogenous peptides to survive for long periods in the hemolymph. Enzyme-resistant insect kinin analogues can provide useful tools to insect researchers studying the neuroendocrine control of water and ion balance and the physiological consequences of challenging insect with diuretic factors that demonstrate enhanced resistance to peptidase attack. If these analogues, whether in isolation or in combination with other factors, can disrupt the water and/or ion balance they hold potential utility for the control of pest insect populations in the future.
Proteome Science | 2006
Michael J. Walker; Caroline M. Rylett; Jeffrey N. Keen; Neil Audsley; Mohammed Sajid; Alan D. Shirras; R. Elwyn Isaac
BackgroundIn Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions.ResultsThirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a γ-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. γ-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG γ-glutamyl transpeptidase (GGT-1) is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong γ-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster.ConclusionWe have applied biochemical approaches, not used previously, to characterise prominent D. melanogaster accessory gland products. Of the thirteen accessory gland secreted proteins reported in this study, six were represented in a D. simulans male accessory gland EST library that was biased for male-specific genes. Therefore, the present study has identified seven new secreted accessory gland proteins, including GGT-1, which was not recognised previously as a secreted accessory gland product.
The Journal of Comparative Neurology | 2003
Åsa M.E. Winther; Richard J. Siviter; R. Elwyn Isaac; Reinhard Predel; Dick R. Nässel
The gene Dtk, encoding the prohormone of tachykinin‐related peptides (TRPs), has been identified from Drosophila. This gene encodes five putative tachykinin‐related peptides (DTK‐1 to 5) that share the C‐terminal sequence FXGXRamide (where X represents variable residues) as well as an extended peptide (DTK‐6) with the C‐terminus FVAVRamide). By mass spectrometry (MALDI‐TOF‐MS), we identified ion signals with masses identical to those of DTK‐1 to 5 in specific brain regions. We have analyzed the distribution of the Dtk transcript and peptides, by in situ hybridization and immunocytochemistry during postembryonic development of the central nervous system (CNS) of Drosophila. Antiserum against a cockroach TRP that cross‐reacts with the DTKs was used for immunocytochemistry. Expression of transcript and peptides was detected from first to third instar larvae, through metamorphosis to adult flies. Throughout postembryonic development, we were able to follow the strong expression of TRPs in a pair of large descending neurons with cell bodies in the brain. The number of TRP‐expressing neuronal cell bodies in the brain and ventral nerve cord increases during larval development. In the early pupa (stage P8), the number of TRP‐expressing cell bodies is lower than in the third instar larvae. The number drastically increases during later pupal development, and in the adult fly about 200 TRP‐expressing neurons can be seen in the CNS. The continuous expression of TRPs in neurons throughout postembryonic development suggests specific functional roles in both larval and imaginal flies and possibly also in some neurons during pupal development. J. Comp. Neurol. 464:180–196, 2003.
Scientific Reports | 2012
Geoffrey Masuyer; Sylva L. U. Schwager; Edward D. Sturrock; R. Elwyn Isaac; K. Ravi Acharya
Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave angiotensin I (Ang I) to the vasoactive octapeptide angiotensin II (Ang II), but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a physiological modulator of hematopoiesis. For the first time we provide a detailed biochemical and structural basis for the domain selectivity of the natural peptide inhibitors of ACE, bradykinin potentiating peptide b and Ang II. Moreover, Ang II showed selective competitive inhibition of the carboxy-terminal domain of human somatic ACE providing evidence for a regulatory role in the human renin-angiotensin system (RAS).
Journal of Biological Chemistry | 2003
Darren R. Brooks; Peter J. Appleford; Lindsay Murray; R. Elwyn Isaac
Genome sequence analyses predict many proteins that are structurally related to proteases but lack catalytic residues, thus making functional assignment difficult. We show that one of these proteins (ACN-1), a unique multi-domain angiotensin-converting enzyme (ACE)-like protein from Caenorhabditis elegans, is essential for larval development and adult morphogenesis. Green fluorescent protein-tagged ACN-1 is expressed in hypodermal cells, the developing vulva, and the ray papillae of the male tail. The hypodermal expression of acn-1 appears to be controlled by nhr-23 and nhr-25, two nuclear hormone receptors known to regulate molting in C. elegans. acn-1(RNAi) causes arrest of larval development because of a molting defect, a protruding vulva in adult hermaphrodites, severely disrupted alae, and an incomplete seam syncytium. Adult males also have multiple tail defects. The failure of the larval seam cells to undergo normal cell fusion is the likely reason for the severe disruption of the adult alae. We propose that alteration of the ancestral ACE during evolution, by loss of the metallopeptidase active site and the addition of new protein modules, has provided opportunities for novel molecular interactions important for post-embryonic development in nematodes.
Journal of Proteome Research | 2011
Wencke Reiher; Christine Shirras; Joerg Kahnt; Stefan Baumeister; R. Elwyn Isaac; Christian Wegener
Peptide hormones are key messengers in the signaling network between the nervous system, endocrine glands, energy stores and the gastrointestinal tract that regulates feeding and metabolism. Studies on the Drosophila nervous system have uncovered parallels and homologies in homeostatic peptidergic signaling between fruit flies and vertebrates. Yet, the role of enteroendocrine peptides in the regulation of feeding and metabolism has not been explored, with research hampered by the unknown identity of peptides produced by the flys intestinal tract. We performed a peptidomic LC/MS analysis of the fruit fly midgut containing the enteroendocrine cells. By MS/MS fragmentation, we found 24 peptides from 9 different preprohormones in midgut extracts, including MIP-4 and 2 forms of AST-C. DH(31), CCHamide1 and CCHamide2 are biochemically characterized for the first time. All enteroendocrine peptides represent brain-gut peptides, and apparently are processed by Drosophila prohormone convertase 2 (AMON) as suggested by impaired peptide detectability in amon mutants and localization of amon-driven GFP to enteroendocrine cells. Because of its genetic amenability and peptide diversity, Drosophila provides a good model system to study peptide signaling. The identification of enteroendocrine peptides in the fruit fly provides a platform to address functions of gut peptide hormones in the regulation of feeding and metabolism.
General and Comparative Endocrinology | 2009
R. Elwyn Isaac; Nicholas D. Bland; Alan D. Shirras
Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.
Developmental Biology | 2003
Debra Hurst; Caroline M. Rylett; R. Elwyn Isaac; Alan D. Shirras
The Angiotensin-converting enzyme (Ance) gene of Drosophila melanogaster is a homologue of mammalian angiotensin-converting enzyme (ACE), a peptidyl dipeptidase implicated in regulation of blood pressure and male fertility. In Drosophila, Ance protein is present in vesicular structures within spermatocytes and immature spermatids. It is also present within the lumen of the testis and the waste bag, and is associated with the surface of elongated spermatid bundles. Ance mRNA is found mainly in large primary spermatocytes and is not detectable in cyst cells. Testes lacking germ cells have reduced levels of ACE activity, and no Ance protein is detectable by immunocytochemistry, indicating that the germ cells are the major site of Ance synthesis. Ance mutant testes lack individualised sperm and have very few actin-based individualisation complexes. Spermatid nuclei undergo scattering along the cyst and have abnormal morphology, similar to other individualisation mutants. Mutant spermatids also have abnormal ultrastructure with grossly defective mitochondrial derivatives. The failure of Ance mutant testes to form individualisation complexes may be due to a failure in correct spermatid differentiation. Taken together, the expression pattern and mutant phenotype suggest that Ance is required for spermatid differentiation, probably through the processing of a regulatory peptide synthesised within the developing cyst.