Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Feifel is active.

Publication


Featured researches published by R. Feifel.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001

Beam line I411 at MAX II - Performance and first results

M. Bässler; A. Ausmees; M. Jurvansuu; R. Feifel; J.-O. Forsell; P. de Tarso Fonseca; A. Kivimäki; S. Sundin; Stacey Ristinmaa Sörensen; R. Nyholm; Olle Björneholm; S. Aksela; S. Svensson

We report on the characteristics and first results from the soft X-ray beam line I411, based on an undulator at the third generation synchrotron facility MAX II, Sweden. The beam line is designed for high-resolution, angle-resolved electron spectroscopy on gases, liquids and solids. Main components are the modified SX700 monochromator and the end station, both of which were previously used at beam line 51 at MAX I. The end station is equipped with a rotatable SES-200 hemispherical electron-analyser. Before the end station, a one-metre section is reserved for exchangeable experimental set-ups. The usable photon energy range is 50-1500 eV and the photon flux is two orders of magnitudes higher compared to beam line 51. At 400 eV a resolving power of about 5700 in the first order of the monochromator grating could be obtained. In gas phase, a total electron energy resolution of 16 meV has been achieved. Detailed results on the undulator performance, flux, photon and electron energy resolution as well as some technical details are presented here. As an example of the capabilities of the beam line I411, we present the fully vibrationally resolved Auger resonant Raman electron spectrum of gas-phase N 2.


Journal of Electron Spectroscopy and Related Phenomena | 1999

Soft X-ray undulator beam line I411 at MAX-II for gases, liquids and solid samples

M. Bässler; J. O. Forsell; Olle Björneholm; R. Feifel; M. Jurvansuu; S. Aksela; S. Sundin; Stacey Ristinmaa Sorensen; R. Nyholm; A. Ausmees; S. Svensson

We report on the build-up of the new undulator beam line 1411 at the third-generation synchrotron radiation facility MAX II in Lund, Sweden. This beam line is based on an upgraded version of the modified SX700-monochromator and the end station which were installed previously at beam line 51 at MAX I. The end station is equipped with a rotatable Scienta hemispherical electron-analyser making angle-resolved high resolution electron spectroscopy possible for various kinds of samples. The beam line performance will be considerably improved on MAX II due to a new undulator and the superior light source properties, e.g. the small vertical electron beam size. Undulator spectra have been measured and estimates of the photon flux at the experiment and the expected energy resolution are presented. The parameters for a new refocusing mirror were defined by ray tracing using the beam waist of the undulator. The beam line length was extended by 1 m to offer additional space for exchangeable experimental chambers.


Physical Review Letters | 2013

Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses

H. Fukuzawa; Sang-Kil Son; K. Motomura; S. Mondal; K. Nagaya; S. Wada; XiaoJing Liu; R. Feifel; T. Tachibana; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda

We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe(n+) with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n≥24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers.


Chemical Physics Letters | 2001

Evidence for ultra-fast dissociation of molecular water from resonant Auger spectroscopy

I. Hjelte; Maria Novella Piancastelli; Reinhold F. Fink; Olle Björneholm; M. Bässler; R. Feifel; A. Giertz; H. Wang; Karoline Wiesner; A. Ausmees; C Miron; S. L. Sorensen; S. Svensson

We present direct evidence for ultra-fast dissociation of molecular water in connection photo-excitation of the Ols --> 4a(1) resonance. The core-excited H2O molecules are shown to dissociate into core-excited O*H and neutral H on a time scale comparable


Journal of Chemical Physics | 2005

The electronic structure of free water clusters probed by Auger electron spectroscopy

Gunnar Öhrwall; Reinhold F. Fink; Maxim Tchaplyguine; Lars Ojamäe; Marcus Lundwall; R. R. T. Marinho; A. Naves de Brito; S. L. Sorensen; Mathieu Gisselbrecht; R. Feifel; Torbjörn Rander; Andreas Lindblad; Joachim Schulz; Leif J. Sæthre; Nils Mårtensson; S. Svensson; Olle Björneholm

(H2O)(N) clusters generated in a supersonic expansion source with N approximately 1000 were core ionized by synchrotron radiation, giving rise to core-level photoelectron and Auger electron spectra (AES), free from charging effects. The AES is interpreted as being intermediate between the molecular and solid water spectra showing broadened bands as well as a significant shoulder at high kinetic energy. Qualitative considerations as well as ab initio calculations explain this shoulder to be due to delocalized final states in which the two valence holes are mostly located at different water molecules. The ab initio calculations show that valence hole configurations with both valence holes at the core-ionized water molecule are admixed to these final states and give rise to their intensity in the AES. Density-functional investigations of model systems for the doubly ionized final states--the water dimer and a 20-molecule water cluster--were performed to analyze the localization of the two valence holes in the electronic ground states. Whereas these holes are preferentially located at the same water molecule in the dimer, they are delocalized in the cluster showing a preference of the holes for surface molecules. The calculated double-ionization potential of the cluster (22.1 eV) is in reasonable agreement with the low-energy limit of the delocalized hole shoulder in the AES.


Journal of Physics B | 2003

Observation of elastic scattering effects on photoelectron angular distributions in free Xe clusters

Gunnar Öhrwall; Maxim Tchaplyguine; Mathieu Gisselbrecht; Marcus Lundwall; R. Feifel; Torbjörn Rander; Joachim Schulz; Rrt Marinho; Andreas Lindgren; S. L. Sorensen; S. Svensson; Olle Björneholm

We report an observation of substantial deviations in the photoelectron angular distribution for photoionization of atoms in free Xe clusters compared to the case of photoionization of free atoms. The cross section, however, seems not to vary between the cluster and free atoms. This observation was made in the vicinity of the Xe 4d Cooper minimum, where the atomic angular distribution is known to vary dramatically. The angular distribution of electrons emitted from atoms in the clusters is more isotropic than that of free atoms over the entire kinetic energy range studied. Furthermore, the angular distribution is more isotropic for atoms in the interior of the clusters than for atoms at the surface. We attribute this deviation to elastic scattering of the outgoing photoelectrons. We have investigated two average cluster sizes, (N) approximate to 4000 and 1000 and found no significant differences between these two cases. (Less)


Journal of Physics B | 2000

Bond-distance-dependent decay probability of the N 1s →π* core-excited state in N2

Maria Novella Piancastelli; Reinhold F. Fink; R. Feifel; M. Bässler; S. L. Sorensen; C Miron; H. Wang; I. Hjelte; Olle Björneholm; A. Ausmees; S. Svensson; Paweł Sałek; F.Kh. Gel'mukhanov; Hans Ågren

We report the observation of the unusually weak decay of the N 1s --> pi* core-excited N-2 molecule to the (B) over tilde (2)Sigma(u)(+) final state of N-2(+), which is only detectable in an exp ...


Journal of Physics B | 2013

Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by x-ray free-electron laser pulses from SACLA

K. Motomura; H. Fukuzawa; S-K Son; S. Mondal; T. Tachibana; Yuta Ito; M. Kimura; K. Nagaya; T. Sakai; K. Matsunami; S. Wada; H. Hayashita; J. Kajikawa; R. Feifel; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda

We have investigated multiphoton multiple ionization of argon and xenon atoms at 5 keV using a new x-ray free electron laser (XFEL) facility, the SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan. The experimental results are compared with the new theoretical results presented here. The absolute fluence of the XFEL pulse has been determined with the help of the calculations utilizing two-photon processes in the argon atom. The high charge states up to +22 observed for Xe in comparison with the calculations point to the occurrence of sequential L-shell multiphoton absorption and of resonance-enabled x-ray multiple ionization.


Journal of Chemical Physics | 2001

Femtosecond dissociation of ozone studied by the Auger Doppler effect

L. Rosenqvist; Karoline Wiesner; A. Naves de Brito; M. Bässler; R. Feifel; I. Hjelte; C. Miron; Hong-Gen Wang; Maria Novella Piancastelli; S. Svensson; Olle Björneholm; S. L. Sorensen

A Doppler-type shift in the kinetic energy of atomic Auger electrons emitted after fast dissociation of O3 molecules is observed. The resonant Auger spectrum from the decay of repulsive core-excited states reflects both the early molecular ozone decay and that from excited dissociation fragments. The kinetic energy of the fragment is manifested as an energy shift of the atomic Auger lines when the measurement is made under certain conditions. We report measurements of the energy-split atomic fragment emission lines arising from dissociation on a time scale comparable to the core-hole lifetime. For the O 1s–* states the kinetic energy release amounts to several electron volts. We report measurements for excitation of both the terminal and central oxygen 1s electrons. A simple kinematic model for extracting a lower limit for the kinetic-energy release is presented and is compared with the result of a Born–Haber cycle, which may be seen as an estimate of the maximum energy release


Journal of Chemical Physics | 2010

Ion-ion coincidence studies on multiple ionizations of N2 and O2 molecules irradiated by extreme ultraviolet free-electron laser pulses

Aruba Yamada; H. Fukuzawa; K. Motomura; L. Foucar; M. Kurka; M. Okunishi; K. Ueda; Norio Saito; H. Iwayama; K. Nagaya; A. Sugishima; H. Murakami; Makoto Yao; Artem Rudenko; K. U. Kühnel; Joachim H. Ullrich; R. Feifel; A. Czasch; R. Dörner; Mitsuru Nagasono; A. Higashiya; M. Yabashi; Takeshi Ishikawa; H. Ohashi; H. Kimura; T. Togashi

We have investigated multiple ionization of N(2) and O(2) molecules by 52 nm extreme-ultraviolet light pulses at the free-electron laser facility SCSS in Japan. Coulomb break-up of parent ions with charge states up to 5+ is found by the ion-ion coincidence technique. The charge-state dependence of kinetic energy release distributions suggests that the electrons are emitted sequentially in competition with the elongation of the bond length.

Collaboration


Dive into the R. Feifel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Karlsson

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge