Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Friesen is active.

Publication


Featured researches published by R. Friesen.


The Astrophysical Journal | 2013

The Herschel and JCMT Gould Belt Surveys: Constraining Dust Properties in the Perseus B1 Clump with PACS, SPIRE, and SCUBA-2

S. Sadavoy; J. Di Francesco; D. Johnstone; Malcolm J. Currie; E. Drabek; J. Hatchell; D. Nutter; P. André; D. Arzoumanian; M. Benedettini; J.-P. Bernard; A. Duarte-Cabral; C. Fallscheer; R. Friesen; J. S. Greaves; M. Hennemann; T. Hill; T. Jenness; V. Könyves; Brenda C. Matthews; J. C. Mottram; S. Pezzuto; A. Roy; K. L. J. Rygl; N. Schneider-Bontemps; L. Spinoglio; L. Testi; N. F. H. Tothill; Derek Ward-Thompson; G. J. White

We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four different techniques to combine the Herschel PACS+SPIRE data at 160 - 500 microns with the SCUBA-2 data at 450 microns and 850 microns. Of our four techniques, we found the most robust method was to filter-out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find beta ~ 2 towards the filament region and moderately dense material and lower beta values (beta > 1.6) towards the dense protostellar cores, possibly due to dust grain growth. We find that beta and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ~ 2 for beta and by ~ 40% for temperature. Furthermore, we find core mass differences of < 30% compared to Herschel-only estimates with an adopted beta = 2, highlighting the necessity of long wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.


Monthly Notices of the Royal Astronomical Society | 2015

The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population

K. Pattle; Derek Ward-Thompson; Jason Matthew Kirk; G. J. White; Emily Drabek-Maunder; J. V. Buckle; S. F. Beaulieu; David Berry; H. Broekhoven-Fiene; M. J. Currie; M. Fich; J. Hatchell; Helen Kirk; T. Jenness; D. Johnstone; J. C. Mottram; D. Nutter; Jaime E. Pineda; C. Quinn; C. Salji; S. Tisi; S. Walker-Smith; J. Di Francesco; M. R. Hogerheijde; P. André; Pierre Bastien; D. Bresnahan; Harold M. Butner; M. Chen; A. Chrysostomou

In this paper, we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with previous HARP CO, Herschel, and IRAM N2H+ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialized. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N2H+ is a good tracer of the bound material of prestellar cores, although we find some evidence for N2H+ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C18O and that traced by N2H+, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor–Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from south-west to north-east, indicating sequential star formation across the region.


Monthly Notices of the Royal Astronomical Society | 2013

Abundant cyanopolyynes as a probe of infall in the Serpens South cluster-forming region

R. Friesen; L. Medeiros; Scott Schnee; T. L. Bourke; J. Di Francesco; Robert Allen Gutermuth; P. C. Myers

We have detected bright HC7N J = 21 20 emission toward multiple locations in the Serpens South cluster-forming region using the K-Band Focal Plane Array at the Robert C. Byrd Green Bank Telescope. HC7N is seen primarily toward cold filamentary structures that have yet to form stars, largely avoiding the dense gas associated with small protostellar groups and the main central cluster of Serpens South. Where detected, the HC7N abundances are similar to those found in other nearby starforming regions. Toward some HC7N ‘clumps’, we find consistent variations in the line centroids relative to NH3 (1,1) emission, as well as systematic increases in the HC7N non-thermal line widths, which we argue reveal infall motions onto dense filaments within Serpens South with minimum mass accretion rates of M � 2 5 M⊙ Myr −1 . The relative abundance of NH3 to HC7N suggests that the HC7N is tracing gas that has been at densities n � 10 4 cm −3 for timescales t . 1 2 × 10 5 yr. Since HC7N emission peaks are rarely co-located with those of either NH3 or continuum, it is likely that Serpens South is not particularly remarkable in its abundance of HC7N, but instead the serendipitous mapping of HC7N simultaneously with NH3 has allowed us to detect HC7N at low abundances in regions where it otherwise may not have been looked for. This result extends the known star-forming regions containing significant HC7N emission from typically quiescent regions, like the Taurus molecular cloud, to more complex, active environments.


Monthly Notices of the Royal Astronomical Society | 2014

Evidence for large grains in the star-forming filament OMC 2/3

Scott Schnee; B. S. Mason; James Di Francesco; R. Friesen; Di Li; S. Sadavoy; Thomas Stanke

We present a new 3.3 mm continuum map of the OMC-2/3 region. When paired with previously published maps of 1.2mm continuum and NH3-derived temperature, we derive the emissivity spectral index of dust emission in this region, tracking its changes across the filament and cores. We find that the median value of the emissivity spectral index is 0.9, much shallower than previous estimates in other nearby molecular clouds. We find no significant difference between the emissivity spectral index of dust in the OMC-2/3 filament and the starless or protostellar cores. Furthermore, the temperature and emissivity spectral index, beta, are anti-correlated at the 4 sigma level. The low values of the emissivity spectral index found in OMC-2/3 can be explained by the presence of millimeter-sized dust grains in the dense regions of the filaments to which these maps are most sensitive. Alternatively, a shallow dust emissivity spectral index may indicate non-powerlaw spectral energy distributions, significant free-free emission, or anomalous microwave emission. We discuss the possible implications of millimeter-sized dust grains compared to the alternatives.


The Astrophysical Journal | 2012

The Protocluster G18.67+0.03: A Test Case for Class I CH3OH Masers as Evolutionary Indicators for Massive Star Formation

C. J. Cyganowski; C. L. Brogan; Todd R. Hunter; Q. Zhang; R. Friesen; Remy Indebetouw; Claire J. Chandler

We present high angular resolution Submillimeter Array and Karl G. Jansky Very Large Array observations of the massive protocluster G18.67+0.03. Previously targeted in maser surveys of GLIMPSE Extended Green Objects (EGOs), this cluster contains three Class I CH3OH maser sources, providing a unique opportunity to test the proposed role of Class I masers as evolutionary indicators for massive star formation. The millimeter observations reveal bipolar molecular outflows, traced by 13CO(2-1) emission, associated with all three Class I maser sources. Two of these sources (including the EGO) are also associated with 6.7 GHz Class II CH3OH masers; the Class II masers are coincident with millimeter continuum cores that exhibit hot core line emission and drive active outflows, as indicated by the detection of SiO(5-4). In these cases, the Class I masers are coincident with outflow lobes, and appear as clear cases of excitation by active outflows. In contrast, the third Class I source is associated with an ultracompact (UC) H II region, and not with Class II masers. The lack of SiO emission suggests that the 13CO outflow is a relic, consistent with its longer dynamical timescale. Our data show that massive young stellar objects (MYSOs) associated only with Class I masers are not necessarily young and provide the first unambiguous evidence that Class I masers may be excited by both young (hot core) and older (UC H II) MYSOs within the same protocluster.


Monthly Notices of the Royal Astronomical Society | 2015

The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud

G. J. White; Emily Drabek-Maunder; Erik Rosolowsky; Derek Ward-Thompson; Christopher J. Davis; J. Gregson; Jenny Hatchell; Mireya Etxaluze; Sarah Stickler; Jane V. Buckle; Doug Johnstone; R. Friesen; S. Sadavoy; Kieran. V. Natt; Malcolm J. Currie; J. S. Richer; K. Pattle; Marco Spaans; James Di Francesco; M. R. Hogerheijde

CO, 13CO, and C18O J = 3-2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s-2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s-2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s-2), corresponding to 21 per cent of the clouds turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ˜0.01-0.05 pc, virial masses ˜0.1-12 M⊙, luminosities ˜0.001-0.1 K km s-1 pc-2, and excitation temperatures ˜10-50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size-linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.


The Astrophysical Journal | 2014

Revealing H2D+ depletion and compact structure in starless and protostellar cores with ALMa

R. Friesen; J. Di Francesco; T. L. Bourke; P. Caselli; Jes K. Jørgensen; Jaime E. Pineda; M. Wong

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 1_{10}-1_{11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M <~ 0.02M_Sun (~ 20 M_Jup). The SM1 condensation is consistent with a nearly-symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated, and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates these sources are unlikely to fragment, suggesting that both will form single stars. H2D+ is only detected toward SM1N, offset from the continuum peak by ~150-200 AU. This offset may be due to either heating from an undetected, young, low luminosity protostellar source or first hydrostatic core, or HD (and consequently H2D+) depletion in the cold centre of the condensation. We propose that SM1 is protostellar, and that the condensation detected by ALMA is a warm (T ~ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data reveal observationally the earliest stages of the formation of circumstellar accretion regions, and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.


Monthly Notices of the Royal Astronomical Society | 2015

The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar discs in L 1495

J. V. Buckle; Emily Drabek-Maunder; J. S. Greaves; J. S. Richer; Brenda C. Matthews; D. Johnstone; Helen Kirk; S. F. Beaulieu; David Berry; H. Broekhoven-Fiene; M. J. Currie; M. Fich; J. Hatchell; T. Jenness; J. C. Mottram; D. Nutter; K. Pattle; Jaime E. Pineda; C. Salji; S. Tisi; J. Di Francesco; M. R. Hogerheijde; Derek Ward-Thompson; Pierre Bastien; Harold M. Butner; M. Chen; A. Chrysostomou; S. Coude; Christopher J. Davis; A. Duarte-Cabral

We present 850μm and 450μm data from the JCMT Gould Belt Survey obtained with SCUBA-2 and characterise the dust attributes of Class I, Class II and Class III disk sources in L1495. We detect 23% of the sample at both wavelengths, with the detection rate decreasing through the Classes from I--III. The median disk mask is 1.6×10−3M⊙, and only 7% of Class II sources have disk masses larger than 20 Jupiter masses. We detect a higher proportion of disks towards sources with stellar hosts of spectral type K than spectral type M. Class II disks with single stellar hosts of spectral type K have higher masses than those of spectral type M, supporting the hypothesis that higher mass stars have more massive disks. Variations in disk masses calculated at the two wavelengths suggests there may be differences in dust opacity and/or dust temperature between disks with hosts of spectral types K to those with spectral type M.


The Astrophysical Journal | 2016

The JCMT Gould Belt Survey: a first look at dense cores in Orion B

Helen Kirk; J. Di Francesco; D. Johnstone; A. Duarte-Cabral; S. Sadavoy; J. Hatchell; J. C. Mottram; J. V. Buckle; David Berry; H. Broekhoven-Fiene; M. J. Currie; M. Fich; T. Jenness; D. Nutter; K. Pattle; Jaime E. Pineda; C. Quinn; C. Salji; S. Tisi; M. R. Hogerheijde; Derek Ward-Thompson; Pierre Bastien; D. Bresnahan; Harold M. Butner; M. Chen; A. Chrysostomou; S. Coude; Christopher J. Davis; Emily Drabek-Maunder; Jason D. Fiege

We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 micron map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 micron peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 x 10^23 cm^-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 x 10^23 cm^-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023 / 2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.


The Astrophysical Journal | 2016

THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS

Michael Chun-Yuan Chen; J. Di Francesco; D. Johnstone; S. Sadavoy; J. Hatchell; J. C. Mottram; Helen Kirk; J. V. Buckle; David Berry; H. Broekhoven-Fiene; M. J. Currie; M. Fich; T. Jenness; D. Nutter; K. Pattle; Jaime E. Pineda; C. Quinn; C. Salji; S. Tisi; M. R. Hogerheijde; Derek Ward-Thompson; Pierre Bastien; D. Bresnahan; Harold M. Butner; A. Chrysostomou; S. Coude; Christopher J. Davis; Emily Drabek-Maunder; A. Duarte-Cabral; Jason D. Fiege

The dust emissivity spectral index,

Collaboration


Dive into the R. Friesen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Ward-Thompson

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Pattle

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge