Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Gaudiuso is active.

Publication


Featured researches published by R. Gaudiuso.


Sensors | 2010

Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results

R. Gaudiuso; Marcella Dell’Aglio; Olga De Pascale; Giorgio S. Senesi; Alessandro De Giacomo

Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.


Environmental Research | 2009

Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium

Giorgio S. Senesi; M. Dell’Aglio; R. Gaudiuso; A. De Giacomo; Claudio Zaccone; O. De Pascale; Teodoro Miano; M. Capitelli

Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation temperatures and comparable electron number density measured for all samples. An index of the anthropogenic contribution of Cr in polluted soils was calculated in comparison to a non-polluted reference soil. Thus, the intensity ratios of the emission lines of heavy metal can be used to detect in few minutes the polluted areas for which a more detailed sampling and analysis can be useful.


Journal of Environmental Monitoring | 2011

Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS)

M. Dell'Aglio; R. Gaudiuso; Giorgio S. Senesi; Alessandro De Giacomo; Claudio Zaccone; Teodoro Miano; Olga De Pascale

Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.


Physical Chemistry Chemical Physics | 2013

Collinear double pulse laser ablation in water for the production of silver nanoparticles

M. Dell'Aglio; R. Gaudiuso; Remah ElRashedy; Olga De Pascale; Gerardo Palazzo; Alessandro De Giacomo

Experiments of collinear Double Pulse Laser Ablation in Liquid (DP-LAL) were carried out for studying the production mechanisms of nanoparticles (NPs) in water, which revealed the fundamental role of the cavitation bubble dynamics in the formation of aqueous colloidal dispersions. In this work, DP-LAL was used to generate silver nanoparticles (AgNPs) from a silver target submerged in water at atmospheric pressure and room temperature, by using the second harmonic (532 nm) of two Nd:YAG lasers. The second laser pulse was shot at different delay times (i.e. interpulse delay) during the bubble temporal evolution of the first laser induced bubble. Optical Emission Spectroscopy, Shadowgraph Images, Surface Plasmon Resonance absorption spectroscopy and Dynamic Light Scattering were carried out to study the behaviour of laser-induced plasma and cavitation bubbles during the laser ablation in liquid, to monitor the generation of AgNPs under different conditions, and for characterization of NPs. The results of DP-LAL were always compared with the corresponding ones obtained with Single Pulse Laser Ablation in Liquid (SP-LAL), so as to highlight the peculiarities of the two different techniques.


Analytical Chemistry | 2016

Nanoparticle Enhanced Laser-Induced Breakdown Spectroscopy for Microdrop Analysis at subppm Level

Alessandro De Giacomo; Can Koral; Gabriele Valenza; R. Gaudiuso; Marcella Dell’Aglio

In this paper, nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS) was applied to the elemental chemical analysis of microdrops of solutions with analyte concentration at subppm level. The effect on laser ablation of the strong local enhancement of the electromagnetic field allows enhancing the optical emission signal up to more than 1 order of magnitude, enabling LIBS to quantify ppb concentration and notably decreasing the limit of detection (LOD) of the technique. At optimized conditions, it was demonstrated that NELIBS can reach an absolute LOD of few picograms for Pb and 0.2 pg for Ag. The effect of field enhancement in NELIBS was tested on biological solutions such as protein solutions and human serum, in order to improve the sensitivity of LIBS with samples where the formation and excitation of the plasma are not as efficient as with metals. Even in these difficult cases, a significant improvement with respect to conventional LIBS was observed.


Physics and Chemistry of Minerals | 2014

Multi-methodological investigation of kunzite, hiddenite, alexandrite, elbaite and topaz, based on laser-induced breakdown spectroscopy and conventional analytical techniques for supporting mineralogical characterization

Manuela Rossi; Marcella Dell’Aglio; Alessandro De Giacomo; R. Gaudiuso; Giorgio S. Senesi; Olga De Pascale; Francesco Capitelli; Fabrizio Nestola; Maria Rosaria Ghiara

Gem-quality alexandrite, hiddenite and kunzite, elbaite and topaz minerals were characterized through a multi-methodological investigation based on EMPA-WDS, LA-ICP-MS, and laser-induced breakdown spectroscopy (LIBS). With respect to the others, the latter technique enables a simultaneous multi-elemental composition without any sample preparation and the detection of light elements, such as Li, Be and B. The criteria for the choice of minerals were: (a) the presence of chromophore elements in minor contents and/or as traces; (b) the presence of light lithophile elements (Li, Be and B); (c) different crystal chemistry complexity. The results show that LIBS can be employed in mineralogical studies for the identification and characterization of minerals, and as a fast screening method to determine the chemical composition, including the chromophore and light lithophile elements.


Journal of Analytical Atomic Spectrometry | 2016

Perspective on the use of nanoparticles to improve LIBS analytical performance: nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS)

A. De Giacomo; M. Dell'Aglio; R. Gaudiuso; Can Koral; Gabriele Valenza

In this paper, the new approach for Laser Induced Breakdown Spectroscopy (LIBS) based on nanoparticle deposition on the sample surface is reviewed from both fundamental and application points of view. The case of Nanoparticle-Enhanced LIBS (NELIBS) of metal samples is used for describing and discussing the main causes of the emission signal enhancement. A set of test cases is presented, which shows enhancements up to 1–2 orders of magnitude obtained using NELIBS with respect to LIBS. The feasibility and potential of NELIBS are also discussed for several analytical applications, including analysis of metallic samples, transparent samples and aqueous solutions.


Talanta | 2018

Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the noninvasive analysis of transparent samples and gemstones

Can Koral; M. Dell’Aglio; R. Gaudiuso; R. Alrifai; M. Torelli; A. De Giacomo

In this paper, Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy is applied to transparent samples and gemstones with the aim to overcome the laser induced damage on the sample. We propose to deposit a layer of AuNPs on the sample surface by drying a colloidal solution before ablating the sample with a 532 nm pulsed laser beam. This procedure ensures that the most significant fraction of the beam, being in resonance with the AuNP surface plasmon, is mainly absorbed by the NP layer, which in turn results the breakdown to be induced on NPs rather than on the sample itself. The fast explosion of the NPs and the plasma induction allow the ablation and the transfer in the plasma phase of the portion of sample surface where the NPs were placed. The employed AuNPs are prepared in milliQ water without the use of any chemical stabilizers by Pulsed Laser Ablation in Liquids (PLAL), in order to obtain a strict control of composition and impurities, and to limit possible spectral interferences (except from Au emission lines). Therefore with this technique it is possible to obtain, together with the emission signal of Au (coming from atomized NPs), the emission spectrum of the sample, by limiting or avoiding the direct interaction of the laser pulse with the sample itself. This approach is extremely useful for the elemental analysis by laser ablation of high refractive index samples, where the laser pulse on an untreated surface can otherwise penetrate inside the sample, generate breakdown events below the superficial layer, and consequently cause cracks and other damage. The results obtained with NELIBS on high refractive index samples like glasses, tourmaline, aquamarine and ruby are very promising, and demonstrate the potentiality of this approach for precious gemstones analysis.


Archive | 2014

Physical Processes in Optical Emission Spectroscopy

M. Capitelli; Gianpiero Colonna; Giuliano D’Ammando; R. Gaudiuso; Lucia Daniela Pietanza

Different aspects of physical processes in optical emission spectroscopy are analyzed in equilibrium and non equilibrium conditions. A very simple but accurate method to calculate the partition function of atomic species based on the reduction of the energy level pattern to a three grouped levels system is introduced. Collisional-radiative models are illustrated with different examples emphasizing the coupling of the electron energy distribution function with excited states population and radiation. Finally, models including fluid dynamic equations to describe the LIBS plume expansion in both one and two space dimensions are discussed, showing that these methods can be used to qualitatively rationalize double pulse experiments and, to some extent, to reproduce experimental results.


Spectrochimica Acta Part B: Atomic Spectroscopy | 2008

Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples

A. De Giacomo; M. Dell'Aglio; D. Bruno; R. Gaudiuso; O. De Pascale

Collaboration


Dive into the R. Gaudiuso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge