R. H. Varney
SRI International
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. H. Varney.
IEEE Transactions on Plasma Science | 2012
Paul A. Bernhardt; J. O. Ballenthin; J. L. Baumgardner; A. N. Bhatt; Iain D. Boyd; Jonathan M. Burt; Ronald G. Caton; A. Coster; P. J. Erickson; J. D. Huba; G. D. Earle; C. R. Kaplan; J. C. Foster; K. M. Groves; R. A. Haaser; R. A. Heelis; D. E. Hunton; D. L. Hysell; J. H. Klenzing; M. F. Larsen; F. D. Lind; Todd Pedersen; R. F. Pfaff; R. A. Stoneback; P. A. Roddy; S. P. Rodriquez; G. San Antonio; P. W. Schuck; Carl L. Siefring; C. A. Selcher
On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.
Journal of Geophysical Research | 2015
R. H. Varney; M. Wiltberger; W. Lotko
Initial demonstrations of an ionosphere/polar wind model including a phenomenological treatment of transverse heating by wave particle interactions (WPIs) are presented. Tests with fixed WPI parameters in a designated heating region on the dayside with time-varying convection show that the parameters of the resulting nonthermal ion outflow are strongly coupled to the convection. The hemispheric outflow rate is positively correlated with the convection speed with a time delay related to the travel time to the upper boundary. Increases in convection increase the thermal plasma access to the heating region, both by increasing the upflow associated with frictional heating and by increasing the horizontal transport. The average parallel velocities and energies of the escaping nonthermal ions are anticorrelated with the convection speed due to the finite dwell time in the heating region. The computationally efficient model can be readily coupled into global geospace modeling frameworks in the future.
Journal of Geophysical Research | 2014
R. H. Varney; Stanley C. Solomon; M. J. Nicolls
Photoelectrons escape from the ionosphere on sunlit polar cap field lines. In order for those field lines to carry zero current without significant heavy ion outflow or cold electron inflow, field-aligned potential drops must form to reflect a portion of the escaping photoelectron population back to the ionosphere. Using a 1-D ionosphere-polar wind model and measurements from the Resolute Bay Incoherent Scatter Radar (RISR-N), this paper shows that these reflected photoelectrons are a significant source of heat for the sunlit polar cap ionosphere. The model includes a kinetic suprathermal electron transport solver, and it allows energy input from the upper boundary in three different ways: thermal conduction, soft precipitation, and potentials that reflect photoelectrons. The simulations confirm that reflection potentials of several tens of eV are required to prevent cold electron inflow and demonstrate that the flux tube integrated change in electron heating rate (FTICEHR) associated with reflected photoelectrons can reach 109eV cm−2s−1. Soft precipitation can produce FTICEHR of comparable magnitudes, but this extra heating is divided among more electrons as a result of electron impact ionization. Simulations with no reflected photoelectrons and with downward field-aligned currents (FAC) primarily carried by the escaping photoelectrons have electron temperatures which are ∼250–500 K lower than the RISR-N measurements in the 300–600 km region; however, simulations with reflected photoelectrons, zero FAC, and no other form of heat flux through the upper boundary can satisfactorily reproduce the RISR-N data.
Journal of Geophysical Research | 2015
I. J. Cohen; M. R. Lessard; R. H. Varney; K. Oksavik; M. Zettergren; K. A. Lynch
Motivated by rocket observations showing a variety of different ionospheric responses to precipitation, this paper explores the influence of the background ionospheric density on upflow resulting from auroral precipitation. Simulations of upflow driven by auroral precipitation were conducted using a version of the Varney et al. (2014) model driven by precipitation characterized by observations made during the 2012 Magnetosphere-Ionosphere Coupling in the Alfven resonator rocket mission and using a variety of different initial electron density profiles. The simulation results show that increased initial density before the onset of precipitation leads to smaller electron temperature increases, longer ionospheric heating timescales, weaker ambipolar electric fields, lower upflow speeds, and longer upflow timescales but larger upflow fluxes. The upflow flux can increase even when the ambipolar electric field strength decreases due to the larger number of ions that are accelerated. Long-term observations from the European Incoherent Scatter (EISCAT) Svalbard radar taken during the International Polar Year support the effects seen in the simulations. This correlation between ionospheric density and ion upflows emphasizes the important role of photoionization from solar ultraviolet radiation, which the EISCAT observations show can increase ionospheric density by as much as an order of magnitude during the summer months.
Journal of Geophysical Research | 2015
D. L. Hysell; M. A. Milla; F. S. Rodrigues; R. H. Varney; J. D. Huba
We present observations of the topside ionosphere made at the Jicamarca Radio Observatory in March and September 2013, made using a full-profile analysis approach. Recent updates to the methodology employed at Jicamarca are also described. Measurements of plasma number density, electron and ion temperatures, and hydrogen and helium ion fractions up to 1500 km altitude are presented for 3 days in March and September. The main features of the observations include a sawtooth-like diurnal variation in ht, the transition height where the O+ ion fraction falls to 50%, the appearance of weak He+ layers just below ht, and a dramatic increase in plasma temperature at dawn followed by a sharp temperature depression around local noon. These features are consistent from day to day and between March and September. Coupled Ion Neutral Dynamics Investigation data from the Communication Navigation Outage Forecast System satellite are used to help validate the March Jicamarca data. The SAMI2-PE model was able to recover many of the features of the topside observations, including the morphology of the plasma density profiles and the light-ion composition. The model, forced using convection speeds and meridional thermospheric winds based on climatological averages, did not reproduce the extreme temperature changes in the topside between sunrise and noon. Some possible causes of the discrepancies are discussed.
Journal of Geophysical Research | 2016
R. H. Varney; M. Wiltberger; Binzheng Zhang; W. Lotko; J. G. Lyon
We describe a coupled geospace model that includes causally regulated ion outflow from a physics-based ionosphere/polar wind model. The model two-way couples the multifluid Lyon-Fedder-Mobarry magnetohydrodynamics (MHD) model to the ionosphere/polar wind model (IPWM). IPWM includes the H+ and O+ polar wind as well as a phenomenological treatment of energetic O+ accelerated by wave-particle interactions (WPI). Alfvénic Poynting flux from the MHD simulation causally regulates the ion acceleration. The wave-particle interactions (WPI) model has been tuned and validated with comparisons to particle-in-cell simulations and empirical relationships derived from Fast Auroral Snapshot satellite data. IPWM captures many aspects of the ion outflow that empirical relationships miss. First, the entire coupled model conserves mass between the ionospheric and magnetospheric portions, meaning the amount of outflow produced is limited by realistic photochemistry in the ionosphere. Second, under intense driving conditions, the outflow becomes flux limited by what the ionosphere is capable of providing. Furthermore, the outflows produced exhibit realistic temporal and spatial delays relative to the magnetospheric energy inputs. The coupled model provides a flexible way to explore the impacts of dynamic heavy ion outflow on the coupled geospace system. Some of the example simulations presented exhibit internally driven sawtooth oscillations associated with the outflow, and the properties of these oscillations are analyzed further in a companion paper.
Journal of Geophysical Research | 2014
D. L. Hysell; R. J. Miceli; Elizabeth Kendall; Nicola Schlatter; R. H. Varney; B. J. Watkins; Todd Pedersen; Paul A. Bernhardt; J. D. Huba
Spectrographic airglow measurements were made during an ionospheric modification experiment at High Frequency Active Auroral Research Program on 12 March 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert (1968, 1970), we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with heater-induced ionization in view of the spatial intermittency of the airglow.
Journal of Geophysical Research | 2016
R. H. Varney; M. Wiltberger; Binzheng Zhang; W. Lotko; J. G. Lyon
We present the first simulations of magnetospheric sawtooth oscillations under steady solar wind conditions that are driven internally by heavy ion outflow from a physics-based model. The simulations presented use the multifluid Lyon-Fedder-Mobarry magnetohydrodynamics model two-way coupled to the ionosphere/polar wind model (IPWM). Depending on the type of wave-particle interactions utilized within IPWM, the coupled simulations exhibit either sawtooth oscillations or steady magnetospheric convection. Contrasting the simulations that do and do not develop sawtooth oscillations yields insights into the relationship between outflow and sawtooth oscillations. The total outflow rate is not an adequate predictor of the convection mode that will emerge. The simulations that develop sawtooth oscillations are characterized by intense outflow concentrated in the midnight auroral region. This outflow distribution mass loads the tail reconnection region without excessively mass loading the dayside reconnection region and leads to an imbalance between the dayside and nightside reconnection rates.
Journal of Geophysical Research | 2015
B. Zhang; R. H. Varney; W. Lotko; O. J. Brambles; Wenbin Wang; Jiuhou Lei; M. Wiltberger; J. G. Lyon
The efficiencies of pathways of thermospheric heating via soft electron precipitation in the dayside cusp region are investigated using the coupled magnetosphere-ionosphere-thermosphere model (CMIT). Event-based data-model comparisons show that the CMIT model is capable of reproducing the thermospheric mass density variations measured by the CHAMP satellite during both quite and active periods. During the 24 August 2005 storm event (Kp = 6−) while intense Joule heating rate occurs in the polar cusp region, including soft electron precipitation is important for accurately modeling the F region thermospheric mass density distribution near the cusp region. During the 27 July 2007 event (Kp = 2−) while little Joule heating rate occurs in the polar cusp region, the controlled CMIT simulations suggest that the direct pathway through the energy exchange between soft electrons and thermospheric neutrals is the dominant process during this event, which only has a small effect on the neutral temperature and mass density at 400 km altitude. Comparisons between the two case studies show that the indirect pathway via increasing the F region Joule heating rate is a dominant process during the 24 August 2005 storm event, which is much more efficient than the direct heating process.
Geophysical Research Letters | 2015
F. S. Rodrigues; M. J. Nicolls; M. A. Milla; J. M. Smith; R. H. Varney; A. Strømme; Carlos R. Martinis; Juan F. Arratia
A new, 14-panel Advanced Modular Incoherent Scatter Radar (AMISR-14) system was recently deployed at the Jicamarca Radio Observatory. We present results of the first coherent backscatter radar observations of equatorial spread F(ESF) irregularities made with the system. Colocation with the 50 MHz Jicamarca Unattended Long-term studies of the Ionosphere and Atmosphere (JULIA) radar allowed unique simultaneous observations of meter and submeter irregularities. Observations from both systems produced similar Range-Time-Intensity maps during bottom-type and bottomside ESF events. We were also able to use the electronic beam steering capability of AMISR-14 to “image” scattering structures in the magnetic equatorial plane and track their appearance, evolution, and decay with a much larger field of view than previously possible at Jicamarca. The results suggest zonal variations in the instability conditions leading to irregularities and demonstrate the dynamic behavior of F region scattering structures as they evolve and drift across the radar beams.