Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. H. Wu is active.

Publication


Featured researches published by R. H. Wu.


Nano Letters | 2013

Buckled Silicene Formation on Ir(111)

Lei Meng; Yeliang Wang; Lizhi Zhang; Shixuan Du; R. H. Wu; Linfei Li; Yi Zhang; Geng Li; Haitao Zhou; Werner A. Hofer; Hong-Jun Gao

Silicene, a two-dimensional (2D) honeycomb structure similar to graphene, has been successfully fabricated on an Ir(111) substrate. It is characterized as a (√7×√7) superstructure with respect to the substrate lattice, as revealed by low energy electron diffraction and scanning tunneling microscopy. Such a superstructure coincides with the (√3×√3) superlattice of silicene. First-principles calculations confirm that this is a (√3×√3)silicene/(√7×√7)Ir(111) configuration and that it has a buckled conformation. Importantly, the calculated electron localization function shows that the silicon adlayer on the Ir(111) substrate has 2D continuity. This work provides a method to fabricate high-quality silicene and an explanation for the formation of the buckled silicene sheet.


Applied Physics Letters | 2000

Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy

Z. Pan; Lianhe Li; W. Zhang; Y. W. Lin; R. H. Wu; Weikun Ge

We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant


Applied Physics Letters | 2000

Kinetic modeling of N incorporation in GaInNAs growth by plasma-assisted molecular-beam epitaxy

Zhong Pan; Lianhe Li; Zhang W; Y. W. Lin; R. H. Wu

We have studied the growth of GaInNAs by a plasma-assisted molecular-beam epitaxy (MBE). It was found that the N-radicals were incorporated into the epitaxial layer like dopant atoms. In the range of 400-500 degrees C, the growth temperature (T-g) mainly affected the crystal quality of GaInNAs rather than the N concentration. The N concentration dropped rapidly when T-g exceeded 500 degrees C. Considering N desorption alone is insufficient to account for the strong falloff of the N concentration with T-g over 500 degrees C, the effect of thermally-activated N surface segregation must be taken into account. The N concentration was independent of the arsenic pressure and the In concentration in GaInNAs layers, but inversely proportional to the growth rate. Based on the experimental results, a kinetic model including N desorption and surface segregation was developed to analyze quantitatively the N incorporation in MBE growth


Nano Letters | 2013

Two-dimensional transition metal honeycomb realized: Hf on Ir(111).

Linfei Li; Yeliang Wang; Sheng-Yi Xie; Xian-Bin Li; Yu-Qi Wang; R. H. Wu; Hong-Bo Sun; Shengbai Zhang; Hong-Jun Gao

Two-dimensional (2D) honeycomb systems made of elements with d electrons are rare. Here, we report the fabrication of a transition metal (TM) 2D layer, namely, hafnium crystalline layers on Ir(111). Experimental characterization reveals that the Hf layer has its own honeycomb lattice, morphologically identical to graphene. First-principles calculations provide evidence for directional bonding between adjacent Hf atoms, analogous to carbon atoms in graphene. Calculations further suggest that the freestanding Hf honeycomb could be ferromagnetic with magnetic moment μ/Hf = 1.46 μ(B). The realization and investigation of TM honeycomb layers extend the scope of 2D structures and could bring about novel properties for technological applications.


Journal of Applied Physics | 2000

Effects of rapid thermal annealing on the optical properties of GaNxAs1−x/GaAs single quantum well structure grown by molecular beam epitaxy

Lianhe Li; Zhong Pan; W. Zhang; Y. W. Lin; Z.Q Zhou; R. H. Wu

The effect of rapid thermal annealing (RTA) on the optical properties of GaNxAs1-x/GaAs strained single quantum well (SQW) was studied by low-temperature photoluminescence (PL). The GaNxAs1-x/GaAs SQW structures were prepared by dc active nitrogen plasma assisted molecular beam epitaxy. PL measurements on a series of samples with different well widths and nitrogen compositions were used to evaluate the effects of RTA. The annealing temperature and time were varied from 650 to 850 degrees C and 30 s to 15 min, respectively. Remarkable improvements of the optical properties of the samples were observed after RTA under optimum conditions. The interdiffusion constants have been calculated by taking into account error function diffusion and solving the Schrodinger equation. The estimated interdiffusion constants D are 10(-17)-10(-16) cm(2)/s for the earlier annealing conditions. Activation energies of 6-7 eV are obtained by fitting the temperature dependence of the interdiffusion constants


Applied Physics Letters | 2000

Interband luminescence and absorption of GaNAs/GaAs single-quantum-well structures

Baoquan Sun; D. S. Jiang; Xiaomin Luo; Z. Y. Xu; Z. Pan; Lianhe Li; R. H. Wu

We have investigated the interband electron transitions in a GaNAs/GaAs single quantum well (QW) by photoluminescence and absorption spectra. The experimental results show that the dominant photoluminescence at low temperature and high excitation intensity originates from transitions within the GaNAs layer. The interband transition energy for QWs with different well widths can be well fitted if a type-II band line up of GaNAs/GaAs QWs is assumed


Journal of Physics: Condensed Matter | 2012

Multi-oriented moire superstructures of graphene on Ir(111): experimental observations and theoretical models

Lei Meng; R. H. Wu; Lizhi Zhang; Linfei Li; Shixuan Du; Yeliang Wang; H. J. Gao

Six types of moiré superstructures of graphene on Ir(111) with different orientations (labeled as R0, R14, R19, R23, R26 and R30) are investigated by low-energy electron diffraction, scanning tunneling microscopy and first-principles calculations. The moiré superstructure of R0 graphene has remarkable diffraction spots and deeper corrugation than that of the other superstructures. A high-order commensurate (HOC) method is applied to produce a list of all possible graphene moiré superstructures on Ir(111). Several useful structural data including the precise matrices of the moiré patterns are revealed. Density functional theory based first-principles calculations that include van der Waals interactions reveal the differences of the geometric environment and electronic structures of carbon atoms with respect to the underlying Ir(111) lattices for all the observed moiré patterns. The further calculations of electronic properties at the graphene-Ir interfaces show that the electron transfers for all superstructures are small and of the same order of magnitude, which demonstrates a weak interaction between graphene and the Ir(111) substrate, leading to the coexistence of multi-oriented moiré superstructures.


Applied Physics Letters | 2012

Silicon intercalation at the interface of graphene and Ir(111)

Lei Meng; R. H. Wu; Haitao Zhou; Geng Li; Yi Zhang; Linfei Li; Yeliang Wang; Hong-Jun Gao

We report on the structural and electronic properties in the heterostructure of graphene/silicon/Ir(111). A (√19 × √19)R23.41° superstructure is confirmed by low energy electron diffraction and scanning tunneling microscopy and its formation is ascribed to silicon intercalation at the interface between the graphene and the Ir(111) substrate. The dI/dV measurements indicate that the interaction between graphene and Ir is effectively decoupled after silicon intercalation. Raman spectroscopy also reveals the vibrational states of graphene, G peak and 2D peak, which further demonstrates that the silicon-buffered graphene behaves more like intrinsic graphene.


Applied Physics Letters | 2005

GaAs-based room-temperature continuous-wave 1.59 {mu}m GaInNAsSb single-quantum-well laser diode grown by molecular-beam epitaxy

Zhichuan Niu; Suohui Zhang; Haiqiao Ni; Desheng Wu; Huaping Zhao; Hongling Peng; Yuzhuan Xu; Shaopeng Li; Zhoutong He; Zewei Ren; Q. Han; X. H. Yang; Yuanbo Du; R. H. Wu

Starting from the growth of high-quality 1.3μmGaInNAs∕GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55μm by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5μm range GaInNAsSb∕GaNAs QWs are quite comparable to the 1.3μm QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59μm lasing of a GaInNAsSb∕GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6kA∕cm2 with as-cleaved facet mirrors.


Applied Physics Letters | 1999

INVESTIGATION OF PERIODICITY FLUCTUATIONS IN STRAINED (GANAS)1(GAAS)M SUPERLATTICES BY THE KINEMATICAL SIMULATION OF X-RAY DIFFRACTION

Zhong Pan; Yuren Wang; Y. Zhuang; Y. W. Lin; Zuyao Zhou; Lianhe Li; R. H. Wu; Qisheng Wang

Periodicity fluctuations of layer thickness and composition in a superlattice not only decrease the intensity, they also broaden the width of the satellite peaks in the x-ray diffraction pattern. In this letter, we develop a method that is dependent on the width of satellite peaks to assess periodicity fluctuations of a superlattice quickly. A linear relation of the magnitude of fluctuations, peak width and peak order has been derived from x-ray diffraction kinematical theory. By means of this method, periodicity fluctuations in strained (GaNAs)(1)(GaAs)(m) superlattices grown on GaAs substrates by molecular beam epitaxy have been studied. Distinct satellite peaks indicate that the superlattices are of high quality. The N composition of 0.25 and its fluctuation of 20% in a strained GaNxAs1-x monolayer are obtained from simulations of the measured diffraction pattern. The x-ray simulations and in situ observation results of reflection high-energy electron diffraction are in good agreement

Collaboration


Dive into the R. H. Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.F Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yeliang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Z. Pan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong-Jun Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Y. W. Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

D. G. Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haiqiao Ni

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Q. Han

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge