Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Helmus is active.

Publication


Featured researches published by R. Helmus.


Science of The Total Environment | 2013

Toxicity of new generation flame retardants to Daphnia magna

S.L. Waaijers; Julia Hartmann; A. Marieke Soeter; R. Helmus; Stefan A.E. Kools; Pim de Voogt; Wim Admiraal; J.R. Parsons; M.H.S. Kraak

There is a tendency to substitute frequently used, but relatively hazardous brominated flame retardants (BFRs) with halogen-free flame retardants (HFFRs). Consequently, information on the persistence, bioaccumulation and toxicity (PBT) of these HFFRs is urgently needed, but large data gaps and inconsistencies exist. Therefore, in the present study the toxicity of a wide range of HFFRs to the water flea Daphnia magna was investigated. Our results revealed that four HFFRs were showing no effect at their Sw (saturated water concentration) and three had a low toxicity (EC50>10 mg L(-1)), suggesting that these compounds are not hazardous. Antimony trioxide had a moderate toxicity (EC50=3.01 mg L(-1), 95% CL: 2.76-3.25) and triphenyl phosphate and the brominated reference compound tetra bromobisphenol A were highly toxic to D. magna (EC50=0.55 mg L(-1), 95% CL: 0.53-0.55 and EC50=0.60 mg L(-1), 95% CL: 0.24-0.97 respectively). Aluminum trihydroxide and bisphenol A bis(diphenyl phosphate) caused limited mortality at Sw (26 and 25% respectively) and have a low solubility (<10 mg L(-1)). Hence, increased toxicity of these compounds may be observed when for instance decreasing pH could increase solubility. By testing all compounds under identical conditions we provided missing insights in the environmental hazards of new generation flame retardants and propose as best candidates for BFR replacements: APP, ALPI, DOPO, MHO, MPP, ZHS and ZS.


Journal of Chromatography A | 2016

Robust analysis of underivatized free amino acids in soil by hydrophilic interaction liquid chromatography coupled with electrospray tandem mass spectrometry

Jiajia Gao; R. Helmus; C. Cerli; Boris Jansen; Xiang Wang; Karsten Kalbitz

Amino acids are an important and highly dynamic fraction of organic N in soils and their determination in soil without derivatization is challenging due to the difficulties in separation and detection of trace amounts of these polar analytes. In the present work, we developed an analytical method to quantify 20 free amino acids in aqueous soil extracts without derivatization. The method employed hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) technique combined with a cation exchange solid phase extraction (SPE). Four stable isotope labelled amino acids were used as internal standards to improve the method performance. Good separation of 20 underivatized amino acids was achieved within 12min. The limit of detection (LODs) and limit of quantification (LOQs) were in the range of 13-384ngg(-1) and 43-1267ngg(-1) (dry soil basis), respectively. The results showed that overall recoveries with high precision were obtained for the extracted free amino acids from ten different soils. The overall recoveries of 18 amino acids were similar for the ten soils used, which differed substantially in organic C content and in other properties as soil texture and pH. For most of the amino acids, the average recoveries from soil extracts were between 74% and 117%, with the exception of Met (31%), Pro (52%) and Arg (68%). Variability was within acceptable limits (relative standard deviations were between 4% and 13%), with the exception of Met (relative standard deviation=90%) and Arg (relative standard deviation=53%). Thus the proposed method with high throughout and high analyte specificity shows great promise for consistent analysis of free amino acids extracted from soils and offers new horizons for the analysis of amino acids in terrestrial and aquatic ecosystem.


Chemosphere | 2014

Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge

S.S. Jurgens; R. Helmus; S.L. Waaijers; D. Uittenbogaard; D. Dunnebier; M. Vleugel; M.H.S. Kraak; P. de Voogt; J.R. Parsons

Halogen-free flame retardants (HFFRs), such as the aromatic organophosphorus flame retardants (OPFRs) triphenyl phosphate (TPHP), resorcinol bis(diphenylphosphate) (PBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) have been proposed as potential replacements for brominated flame retardants in polymers and textiles. Although these OPFRs are already marketed, their environmental fate and effects are poorly characterised. The aim of this study was therefore to determine the mineralisation and primary biodegradation of these OPFRs by activated sludge. Mineralisation was monitored by measuring CO2 production by means of GC analysis, whereas primary biodegradation was monitored by LC-MS/MS analysis of the OPFRs and their potential metabolites. TPHP was biodegraded and mineralised most rapidly and achieved the requirement for ready biodegradability (60% of theoretical maximum mineralisation). Primary biodegradation was also rapid for PBDPP, but 60% mineralisation was not achieved within the time of the test, suggesting that transformation products of PBDPP may accumulate. Primary degradation of BPA-BDPP was very slow and very low CO2 production was also observed. Based on these results, TPHP and to a lesser extent PBDPP appear to be suitable replacements for the more environmentally persistent brominated flame retardants.


Journal of Chromatography A | 2016

A method for the determination of fullerenes in soil and sediment matrices using ultra-high performance liquid chromatography coupled with heated electrospray quadrupole time of flight mass spectrometry

Andrea Carboni; R. Helmus; J.R. Parsons; Karsten Kalbitz; Pim de Voogt

The increasing production of fullerenes likely means a release of these chemicals in the environment. Since soils and sediments are expected to act as a sink, analytical tools are needed to assess the presence of fullerenes in these matrices. In the present work, a method was developed for the determination of fullerenes at environmental relevant levels employing Ultra High Performance Liquid Chromatograph coupled with High Resolution Mass Spectrometry (UHPLC-HRMS). Chromatographic separation was achieved with a core-shell biphenyl stationary phase that provided fast analysis with complete baseline separation. Ion Booster Electro Spray Ionization (IB-ESI) resulted in higher ionization efficiency and was much less susceptible to adduct formation in comparison with standard ESI, whereas Quadrupole Time of Flight (QTOF) MS granted high resolution mass spectra used for accurate identification. The Instrumental method limits of detection (ILoD) and quantification (ILoQ) were 6 and 20 fg, respectively, for C60 and 12 and 39 fg, respectively, for C70. Matrix effects related to co-extractants were systematically investigated in soil and sediments extracts through standard addition method (SAM) and monitoring the signal response during the chromatographic run of these samples. Consequently, minor chromatographic modifications were necessary for the analysis of matrices with high organic carbon content. The method limit of detection (MLoD)ranged from 84 pg/kg to 335 pg/kg, whereas limit of quantification (MLoQ) ranged from 279 pg/kg to 1.1 ng/kg. Furthermore, the method was successfully applied for the analysis of functionalized fullerenes (i.e. methanofullerenes). To the best of our knowledge, this is the first analytical method for the analysis of fullerenes in soils and sediments that employ core-shell biphenyl stationary phase as well as IB-ESI-QTOF MS hyphenated with UHPLC.


Environmental Science & Technology | 2015

Daphnid Life Cycle Responses to the Insecticide Chlorantraniliprole and Its Transformation Products

Vesna Lavtižar; R. Helmus; S.A.E. Kools; Darko Dolenc; C.A.M. van Gestel; Polonca Trebše; S.L. Waaijers; M.H.S. Kraak

Chlorantraniliprole (CAP) is a newly developed, widely applied insecticide. In the aquatic environment, several transformation products are formed under natural conditions, one by dehydration and others by photoinduced degradation. Data on aquatic ecotoxicity of CAP can mainly be found in registration and regulatory evaluation reports. Moreover, the toxicity of its transformation products and especially effects upon chronic exposure remain completely unknown. Hence, our aim was to investigate the acute and chronic toxicity of CAP and its transformation products to the daphnid Daphnia magna. The results showed that CAP is extremely toxic to D. magna, with an acute and chronic LC50 of 9.4 and 3.7 μg/L, respectively. No effects on daphnid reproduction were observed, but the impact on daphnid survival also affected population growth rate, with an EC50 of 3.5 μg/L. In contrast, no negative effects of the two main degradation products were observed. The present study demonstrated a high sensitivity of nontarget microcrustaceans to CAP. However, the actual risk of CAP in water diminishes with its spontaneous or light-induced degradation into two transformation products, showing no toxicity to the daphnids in the present study.


Science of The Total Environment | 2017

Perfluoroalkyl substances in the Maltese environment ??? (I) surface water and rain water

G. Sammut; Emmanuel Sinagra; R. Helmus; P. de Voogt

The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main inhabited islands: Malta, Gozo and Comino. Surface water was collected from 41 valleys during the months of February and March 2015 at the peak of the wet season. Rain water was collected during the months of December 2014, February, August, September and October 2015. PFASs were extracted from the water samples using solid phase extraction and the extracts were then analysed using ultra performance liquid chromatography coupled to mass spectrometry in tandem (UPLC-MS/MS). All surface and rain water samples were contaminated with at least one PFAS. PFOS (<LOD - 8.6ng/L) and PFOA (ND - 16ng/L) were the two major PFASs being detected in 100% and 95% of the surface waters respectively. The ΣPFAS concentrations in rain water ranged between 0.38ng/L (1st October 2015) and 6ng/L (21st February 2015). The Maltese archipelago is surrounded by sea and disconnected from any other mainland; therefore the results confirm that remote environments can become contaminated by PFASs from rain events depending on wind prevailing trajectories.


European Journal of Soil Science | 2017

Competition and surface conditioning alter the adsorption of phenolic and amino acids on soil minerals

J. Gao; Boris Jansen; C. Cerli; R. Helmus; Robert Mikutta; Stefan Dultz; Georg Guggenberger; Karsten Kalbitz

Summary Adsorptive interactions of organic molecules with soil minerals often impair their bioavailability. However, little is known about the adsorption behaviour of phenolic and nitrogenous compounds on different minerals and their mutual interaction with respect to competition and surface conditioning (i.e. surface modification induced by preceding adsorption of the other class of compounds). Therefore, batch adsorption experiments were done to study the interaction between phenolic acids (PAs; salicylic acid, Sal; syringic acid, Syr; ferulic acid, Fer; vanillic acid, Van) and amino acids (AAs; lysine, Lys; glutamic acid, Glu; leucine, Leu; phenylalanine, Phe) during adsorption on goethite and Ca2+-montmorillonite at pH 6 by applying adsorbate concentrations of 0.01, 0.05 and 0.1 mm. Larger adsorption of PAs was observed on goethite than montmorillonite, whereas the phyllosilicate was a better adsorbent for AAs than the oxide. Among all tested PAs, Sal was preferentially adsorbed on both minerals. For the AAs, Glu was preferentially adsorbed on goethite and Lys on montmorillonite. The AAs were more competitive than PAs and partially suppressed the adsorption of PAs on both minerals. The adsorption of PAs or AAs on both minerals was enhanced by surface conditioning with the other group, with larger effects for goethite than montmorillonite. For goethite, surface conditioning by PAs enhanced the adsorption of AAs more (by 97–161%) than did AAs for PAs (9–48%). The results support the hypothesis that pre-adsorption of one class of organic compound can enhance the retention of another class. This suggests that adsorbed organic matter on soil mineral phases might be subject to a self-strengthening effect. Highlights Phenolic acids (PAs) were preferentially retained on goethite. Amino acids (AAs) were preferentially retained on montmorillonite. AAs were more competitive than PAs for adsorption sites on both minerals. Pre-adsorption of one class of compound can enhance the retention of another class.


Environmental Science & Technology | 2017

Identification of Novel Brominated Compounds in Flame Retarded Plastics Containing TBBPA by Combining Isotope Pattern and Mass Defect Cluster Analysis

Ana Ballesteros-Gómez; Joaquín Ballesteros; Xavier Ortiz; Willem Jonker; R. Helmus; Karl J. Jobst; J.R. Parsons; Eric J. Reiner

The study of not only main flame retardants but also of related degradation products or impurities has gained attention in the last years and is relevant to assess the safety of our consumer products and the emission of potential contaminants into the environment. In this study, we show that plastics casings of electric/electronic devices containing TBBPA contain also a complex mixture of related brominated chemicals. These compounds were most probably coming from impurities, byproducts, or degradation products of TBBPA and TBBPA derivatives. A total of 14 brominated compounds were identified based on accurate mass measurements (formulas and tentative structures proposed). The formulas (or number of bromine elements) for 19 other brominated compounds of minor intensity are also provided. A new script for the recognition of halogenated compounds based on combining a simplified isotope pattern and mass defect cluster analysis was developed in R for the screening. The identified compounds could be relevant from an environmental and industrial point of view.


Journal of Chromatography A | 2018

Direct injection analysis of polar micropollutants in natural drinking water sources with biphenyl liquid chromatography coupled to high-resolution time-of-flight mass spectrometry

Vittorio Albergamo; R. Helmus; Pim de Voogt

A method for the trace analysis of polar micropollutants (MPs) by direct injection of surface water and groundwater was validated with ultrahigh-performance liquid chromatography using a core-shell biphenyl stationary phase coupled to time-of-flight high-resolution mass spectrometry. The validation was successfully conducted with 33 polar MPs representative for several classes of emerging contaminants. Identification and quantification were achieved by semi-automated processing of full-scan and data-independent acquisition MS/MS spectra. In most cases good linearity (R2 ≥ 0.99), recovery (75% to 125%) and intra-day (RSD < 20%) and inter-day precision (RSD < 10%) values were observed. Detection limits of 9 to 83 ng/L and 9 to 93 ng/L could be achieved in riverbank filtrate and surface water, respectively. A solid-phase extraction was additionally validated to screen samples from full-scale reverse osmosis drinking water treatment at sub-ng/L levels and overall satisfactory analytical performance parameters were observed for RBF and reverse osmosis permeate. Applicability of the direct injection method is shown for surface water and riverbank filtrate samples from an actual drinking water source. Several targets linkable to incomplete removal in wastewater treatment and farming activities were detected and quantified in concentrations between 28 ng/L for saccharine in riverbank filtrate and up to 1 μg/L for acesulfame in surface water. The solid phase extraction method applied to samples from full-scale reverse osmosis drinking water treatment plant led to quantification of 8 targets between 6 and 57 ng/L in the feed water, whereas only diglyme was detected and quantified in reverse osmosis permeate. Our study shows that combining the chromatographic resolution of biphenyl stationary phase with the performance of time-of-flight high-resolution tandem mass spectrometry resulted in a fast, accurate and robust method to monitor polar MPs in source waters by direct injection with high efficiency.


Heliyon | 2017

Diuron degradation by bacteria from soil of sugarcane crops

Tassia Chiachio Egea; Roberto da Silva; Maurício Boscolo; Janaina Rigonato; Diego A. Monteiro; Danilo Grünig; Humberto da Silva; Frans van der Wielen; R. Helmus; J.R. Parsons; Eleni Gomes

The isolation of microorganisms from soil impacted by xenobiotic chemicals and exposing them in the laboratory to the contaminant can provide important information about their response to the contaminants. The purpose of this study was to isolate bacteria from soil with historical application of herbicides and to evaluate their potential to degrade diuron. The isolation media contained either glucose or diuron as carbon source. A total of 400 bacteria were isolated, with 68% being Gram-positive and 32% Gram-negative. Most isolates showed potential to degrade between 10 and 30% diuron after five days of cultivation; however Stenotrophomonas acidophila TD4.7 and Bacillus cereus TD4.31 were able to degrade 87% and 68%, respectively. The degradation of diuron resulted in the formation of the metabolites DCPMU, DCPU, DCA, 3,4-CAC, 4-CA, 4-CAC and aniline. Based on these results it was proposed that Pseudomonas aeruginosa TD2.3, Stenotrophomonas acidaminiphila TD4.7, B. cereus TD4.31 and Alcaligenes faecalis TG 4.48, act on 3,4-DCA and 4-CA by alkylation and dealkylation while Micrococcus luteus and Achromobacter sp follow dehalogenation directly to aniline. Growth on aniline as sole carbon source demonstrates the capacity of strains to open the aromatic ring. In conclusion, the results show that the role of microorganisms in the degradation of xenobiotics in the environment depends on their own metabolism and also on their synergistic interactions.

Collaboration


Dive into the R. Helmus's collaboration.

Top Co-Authors

Avatar

J.R. Parsons

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Pim de Voogt

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Karsten Kalbitz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

P. de Voogt

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Jansen

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

C. Cerli

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

M.H.S. Kraak

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Gao

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge