Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Hueso is active.

Publication


Featured researches published by R. Hueso.


Astronomy and Astrophysics | 2005

Evolution of protoplanetary disks: Constraints from DM Tauri and GM Aurigae

R. Hueso; Tristan Guillot

We present a one-dimensional model of the formation and viscous evolution of protoplanetary disks. The formation of the early disk is modeled as the result of the gravitational collapse of an isothermal molecular cloud. The disk’s viscous evolution is integrated according to two parameterizations of turbulence: the classical α representation and a β parameterization, representative of non-linear turbulence driven by the keplerian shear. We apply the model to DM Tau and GM Aur, two classical T-Tauri stars with relatively well-characterized disks, retrieving the evolution of their surface density with time. We perform a systematic Monte-Carlo exploration of the parameter space (i.e. values of the α-β parameters, and of the temperature and rotation rate in the molecular cloud) to find the values that are compatible with the observed disk surface density distribution, star and disk mass, age and present accretion rate. We find that the observations for DM Tau require 0.001 <α< 0. 1o r 2 × 10 −5 <β< 5 × 10 −4 . For GM Aur, we find that the turbulent viscosity is such that 4 × 10 −4 <α< 0.01 or 2 × 10 −6 <β< 8 × 10 −5 .T hese relatively large values show that an efficient turbulent diffusion mechanism is present at distances larger than ∼10 AU. This is to be compared to studies of the variations of accretion rates of T-Tauri stars versus age that mostly probe the inner disks, but also yield values of α ∼ 0.01. We show that the mechanism responsible for turbulent diffusion at large orbital distances most probably cannot be convection because of its suppression at low optical depths.


Nature | 2007

South-polar features on Venus similar to those near the north pole

Giuseppe Piccioni; P. Drossart; A. Sánchez-Lavega; R. Hueso; F. W. Taylor; Colin F. Wilson; D. Grassi; L. V. Zasova; Maria Luisa Moriconi; A. Adriani; Sebastien Lebonnois; Angioletta Coradini; B. Bezard; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright ‘dipole’ feature surrounded by a cold ‘collar’ at its north pole. The polar dipole is a ‘double-eye’ feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus’ south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.


Nature | 2006

Methane storms on Saturn's moon Titan

R. Hueso; A. Sánchez-Lavega

The presence of dry fluvial river channels and the intense cloud activity in the south pole of Titan over the past few years suggest the presence of methane rain. The nitrogen atmosphere of Titan therefore appears to support a methane meteorological cycle that sculptures the surface and controls its properties. Titan and Earth are the only worlds in the Solar System where rain reaches the surface, although the atmospheric cycles of water and methane are expected to be very different. Here we report three-dimensional dynamical calculations showing that severe methane convective storms accompanied by intense precipitation may occur in Titan under the right environmental conditions. The strongest storms grow when the methane relative humidity in the middle troposphere is above 80 per cent, producing updrafts with maximum velocities of 20 m s-1, able to reach altitudes of 30 km before dissipating in 5–8 h. Raindrops of 1–5 mm in radius produce precipitation rainfalls on the surface as high as 110 kg m-2 and are comparable to flash flood events on Earth.


Nature | 2007

A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express

P. Drossart; Giuseppe Piccioni; J.-C. Gérard; Miguel Angel Lopez-Valverde; A. Sánchez-Lavega; L. V. Zasova; R. Hueso; F. W. Taylor; B. Bezard; A. Adriani; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; Angioletta Coradini; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus; J. Helbert; Nikolay Ignatiev

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90–120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 µm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at ∼115 km and varies with solar zenith angle over a range of ∼10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km ± 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.


Nature | 2011

Deep winds beneath Saturn/'s upper clouds from a seasonal long-lived planetary-scale storm

A. Sánchez-Lavega; T. del Río-Gaztelurrutia; R. Hueso; Josep M. Gomez-Forrellad; J.F. Sanz-Requena; J. Legarreta; E. García-Melendo; F. Colas; J. Lecacheux; Leigh N. Fletcher; D. Barrado-Navascués; D. Parker

Convective storms occur regularly in Saturn’s atmosphere. Huge storms known as Great White Spots, which are ten times larger than the regular storms, are rarer and occur about once per Saturnian year (29.5 Earth years). Current models propose that the outbreak of a Great White Spot is due to moist convection induced by water. However, the generation of the global disturbance and its effect on Saturn’s permanent winds have hitherto been unconstrained by data, because there was insufficient spatial resolution and temporal sampling to infer the dynamics of Saturn’s weather layer (the layer in the troposphere where the cloud forms). Theoretically, it has been suggested that this phenomenon is seasonally controlled. Here we report observations of a storm at northern latitudes in the peak of a weak westward jet during the beginning of northern springtime, in accord with the seasonal cycle but earlier than expected. The storm head moved faster than the jet, was active during the two-month observation period, and triggered a planetary-scale disturbance that circled Saturn but did not significantly alter the ambient zonal winds. Numerical simulations of the phenomenon show that, as on Jupiter, Saturn’s winds extend without decay deep down into the weather layer, at least to the water-cloud base at pressures of 10–12 bar, which is much deeper than solar radiation penetrates.


Nature | 2008

Depth of a strong Jovian jet from a planetary-scale disturbance driven by storms

A. Sánchez-Lavega; G. S. Orton; R. Hueso; Enrique Garcia-Melendo; S. Pérez-Hoyos; Amy A. Simon-Miller; J. F. Rojas; Jose Manuel Gomez; P. Yanamandra-Fisher; Leigh N. Fletcher; J. Joels; J. Kemerer; Joseph L. Hora; Erich Karkoschka; I. de Pater; Michael H. Wong; Philip S. Marcus; Noemi Pinilla-Alonso; F. Carvalho; C. Go; D. Parker; M. Salway; M. Valimberti; A. Wesley; Z. Pujic

The atmospheres of the gas giant planets (Jupiter and Saturn) contain jets that dominate the circulation at visible levels. The power source for these jets (solar radiation, internal heat, or both) and their vertical structure below the upper cloud are major open questions in the atmospheric circulation and meteorology of giant planets. Several observations and in situ measurements found intense winds at a depth of 24 bar, and have been interpreted as supporting an internal heat source. This issue remains controversial, in part because of effects from the local meteorology. Here we report observations and modelling of two plumes in Jupiter’s atmosphere that erupted at the same latitude as the strongest jet (23° N). The plumes reached a height of 30 km above the surrounding clouds, moved faster than any other feature (169 m s-1), and left in their wake a turbulent planetary-scale disturbance containing red aerosols. On the basis of dynamical modelling, we conclude that the data are consistent only with a wind that extends well below the level where solar radiation is deposited.


Monthly Notices of the Royal Astronomical Society | 2006

The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc

Tristan Guillot; R. Hueso

It has been proposed that the enrichment in noble gases found by Galileo in the atmosphere of Jupiter can be explained by their delivery inside cold planetesimals. We propose instead that this is a sign that the planet formed in a chemically evolved disc and that noble gases were acquired mostly in gaseous form during the envelope capture phase of the planet. We show that the combined settling of grains to the disc mid-plane in the cold outer layers, the condensation of noble gases on to these grains at temperatures below 20–30 K, and the evaporation from high disc altitudes effectively lead to a progressive, moderate enrichment of the disc. The fact that noble gases are vaporized from the grains in the hot inner disc regions (e.g. Jupiter formation region) is not a concern because a negative temperature gradient prevents convection from carrying the species into the evaporating region. We show that the ∼2 times solar enrichment of Ar, Kr and Xe in Jupiter is hence naturally explained by a continuous growth of the planet governed by viscous diffusion in the protosolar disc in conjunction with an evaporation of the disc and its progressive enrichment on a million-year time-scale.


Science | 2011

Thermal structure and dynamics of Saturn's northern springtime disturbance

Leigh N. Fletcher; B. E. Hesman; Patrick G. J. Irwin; Kevin H. Baines; Thomas W. Momary; A. Sánchez-Lavega; F. Michael Flasar; P. L. Read; Glenn S. Orton; Amy A. Simon-Miller; R. Hueso; Gordon L. Bjoraker; A. A. Mamoutkine; Teresa del Río-Gaztelurrutia; Jose Manuel Gomez; Bonnie J. Buratti; Roger N. Clark; Philip D. Nicholson; Christophe Sotin

Satellite and ground-based observations characterize a massive storm on Saturn and its effects on the atmosphere. Saturn’s slow seasonal evolution was disrupted in 2010–2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn’s stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced “beacons” of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.


Icarus | 2012

Solar migrating atmospheric tides in the winds of the polar region of Venus

Javier Peralta; David Luz; D.L. Berry; C. C. C. Tsang; A. Sánchez-Lavega; R. Hueso; Giuseppe Piccioni; Pierre Drossart

We discuss methods currently in use for determining the significance of peaks in the periodograms of time series. We discuss some general methods for constructing significance tests, false alarm probability functions, and the role played in these by independent random variables and by empirical and theoretical cumulative distribution functions. We also discuss the concept of “independent frequencies” in periodogram analysis. We propose a practical method for estimating the significance of periodogram peaks, applicable to all time series irrespective of the spacing of the data. This method, based on Monte Carlo simulations, produces significance tests that are tailor-made for any given astronomical time series. Subject headings: Methods: data analysis — Methods: statistical — Stars: oscillations


American Journal of Physics | 2004

Clouds in planetary atmospheres: A useful application of the Clausius-Clapeyron equation

A. Sánchez-Lavega; Santiago Perez-Hoyos; R. Hueso

The Clausius–Clapeyron equation is used to do a comparative study of the properties of the clouds that form in planetary atmospheres. Simple static atmospheric models for various planets, the satellite Titan, and the extrasolar planet HD209458b are used together with the saturation vapor pressure curves of the different kinds of molecules to determine the pressure, density, and scale height of the clouds in each body. This application of the Clausius–Clapeyron equation extends our knowledge of terrestrial water clouds to different exotic clouds present in other planets.

Collaboration


Dive into the R. Hueso's collaboration.

Top Co-Authors

Avatar

A. Sánchez-Lavega

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Santiago Perez-Hoyos

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

J. F. Rojas

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Enrique Garcia-Melendo

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Glenn S. Orton

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Legarreta

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Javier Peralta

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge