Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Hulse is active.

Publication


Featured researches published by R. Hulse.


Journal of Nuclear Materials | 1987

Plasma-material interactions in TFTR

H.F. Dylla; Team Tftr Team; M.G. Bell; W. Blanchard; P. P. Boody; N. Bretz; R.V. Budny; C.E. Bush; Joseph L. Cecchi; S.A. Cohen; S. K. Combs; S. Davis; B.L. Doyle; P.C. Efthimion; A. C. England; H.P. Eubank; R.J. Fonck; E. D. Fredrickson; L R Grisham; R.J. Goldston; B. Grek; R. Groebner; R.J. Hawryluk; D.B. Heifetz; H. W. Hendel; K. W. Hill; S. Hiroe; R. Hulse; D. Johnson; L. C. Johnson

This paper presents a summary of plasma-material interactions which influence the operation of TFTR with high current (≤ 2.2 MA) ohmically heated, and high-power (∼ 10 MW) neutral-beam heated plasmas. The conditioning procedures which are applied routinely to the first-wall hardware are reviewed. Fueling characteristics during gas, pellet, and neutral-beam fueling are described. Recycling coefficients near unity are observed for most gas fueled discharges. Gas fueled discharges after helium discharge conditioning of the toroidal bumper limiter, and discharges fueled by neutral beams and pellets, show R<1. In the vicinity of the gas fueled density limit (at ne = 5–6 × 1019 m−3) values of Zeff are ≦1.5. Increases in Zeff of ≦1 have been observed with neutral beam heating of 10 MW. The primary low Z impurity is carbon with concentrations decreasing from ∼10% to <1% with increasing ne. Oxygen densities tend to increase with ne, and at the ohmic plasma density limit oxygen and carbon concentrations are comparable. Chromium getter experiments and He2+/D+ plasma comparisons indicate that the limiter is the primary source of carbon and that the vessel wall is a significant source of the oxygen impurity. Metallic impurities, consisting of the vacuum vessel metals (Ni, Fe, Cr) have significant (∼10−4 ne) concentrations only at low plasma densities (ne <1019 m−3). The primary source of metallic impurities is most likely ion sputtering from metals deposited on the carbon limiter surface.


Physics of fluids. B, Plasma physics | 1990

Correlations of heat and momentum transport in the TFTR tokamak

S.D. Scott; V. Arunasalam; Cris W. Barnes; M.G. Bell; M. Bitter; R. Boivin; N. Bretz; R.V. Budny; C.E. Bush; A. Cavallo; T. K. Chu; S.A. Cohen; P. Colestock; S. Davis; D. Dimock; H.F. Dylla; P.C. Efthimion; A. B. Erhrardt; R.J. Fonck; E. D. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L.R. Grisham; G. W. Hammett; R.J. Hawryluk; H. W. Hendel; K. W. Hill; E. Hinnov

Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low‐recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≊χi>χe. Recent measurements have confirmed similar behavior in broad‐density L‐mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test‐particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked‐density TFTR ‘‘supershots’’ with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In hi...


Journal of Nuclear Materials | 1982

Impurity levels and power loading in the pdx tokamak with high power neutral beam injection

R.J. Fonck; M.G. Bell; K. Bol; K. Brau; R. V. Budny; J.L. Cecchi; S.A. Cohen; S. Davis; H.F. Dylla; R.J. Goldston; B. Grek; R.J. Hawryluk; J. Hirschberg; D. Johnson; R. Hulse; R. Kaita; S. Kaye; R.J. Knize; H. Kugel; D. Manos; D.K. Mansfield; K. McGuire; D. Mueller; K. Oasa; M. Okabayashi; D.K. Owens; J. Ramette; R. Reeves; M. Reusch; G.L. Schmidt

Abstract The PDX tokamak provides an experimental facility for the direct comparison of various impurity control techniques under reactor-like conditions. Four neutral beam lines inject > 6 MW for 300 ms. Carbon rail limiter discharges have been used to test the effectiveness of perpendicular injection, but non-disruptive full power operation for > 100 ms is difficult without extensive conditioning. Initial tests of a toroidal bumper limiter indicate reduced power loading and roughly similar impurity levels compared to the carbon rail limiter discharges. Poloidal divertor discharges with up to 5 MW of injected power are cleaner than similar circular discharges, and the power is deposited in a remote divertor chamber. High density divertor operation indicates a reduction of impurity flow velocity in the divertor and enhanced recycling in the divertor region during neutral injection.


Journal of Nuclear Materials | 1984

Initial limiter and getter operation in TFTR

Joseph L. Cecchi; M.G. Bell; M. Bitter; W. Blanchard; N. Bretz; C.E. Bush; S.A. Cohen; J. Coonrod; S. Davis; D. Dimock; B.L. Doyle; H.F. Dylla; P.C. Efthimion; R.J. Fonck; R.J. Goldston; S. von Goeler; B. Grek; D.J. Grove; R.J. Hawryluk; D.B. Heifetz; H. W. Hendel; K. W. Hill; R. Hulse; J. Isaacson; D. Johnson; L. C. Johnson; R. Kaita; S. Kaye; S.J. Kilpatrick; J. Kiraly

Abstract During the recent ohmic heating experiments on TFTR, the movable limiter array, preliminary inner bumper limiter, and prototype ZrAl alloy bulk getter surface pumping system were brought into operation. This paper summarizes the operational experience and plasma characteristics obtained with these components. The near-term upgrades of these systems are also discussed.


Fusion Technology | 1992

Status and plans for TFTR

R.J. Hawryluk; D. Mueller; J. Hosea; Cris W. Barnes; Michael Beer; M.G. Bell; R. Bell; H. Biglari; M. Bitter; R. Boivin; N. Bretz; R. V. Budny; C.E. Bush; Liu Chen; C. Z. Cheng; Steven C. Cowley; D. S. Dairow; P.C. Efthimion; R. J. Fonck; E. D. Fredrickson; H. P. Furth; G. J. Greene; B. Grek; L. Grisham; G. W. Hammett; W.W. Heidbrink; K. W. Hill; D. J. Hoffman; R. Hulse; H. Hsuan

AbstractRecent research on TFTR has emphasized optimization of performance in deuterium plasmas, transport studies and studies of energetic ion and fusion product physics in preparation for the D-T experiments that will commence in July of 1993. TFTR has achieved full hardware design parameters, and the best TFTR discharges in deuterium are projected to QDT of 0.3 to 0.5.The physics phenomena that will be studied during the D-T phase will include: tritium particle confinement and fueling, ICRF heating with tritium, species scaling with tritium, collective alpha-particle instabilities, alpha heating of the plasma and helium ash buildup. It is important for the fusion program that these physics issues be addressed to identify regimes of benign alpha behavior, and to develop techniques to actively stabilize or control instabilities driver by collective alpha effects.


Journal of Nuclear Materials | 1992

A design study for an advanced divertor for DIII-D and ITER: the radiative slot divertor

S.L. Allen; M.E. Rensink; D.N. Hill; R. D. Wood; D. G. Nilson; B.G. Logan; R. D. Stambaugh; T.W. Petrie; G.M. Staebler; M.A. Mahdavi; R. Hulse; R.B. Campbell

Reduction of the divertor heat load is an important issue for future tokamaks, particularly during the technology phase of ITER. We discuss a conceptual design for one type of advanced divertor: the radiative slot divertor. The goal of this divertor configuration is to enhance the radiation in the divertor region and thereby reduce the heat load at the strike points. At the same time, any effects on the core plasma must be minimized. Proof-of-principle experiments to enhance the radiation in the DIII-D divertor have been performed both with deuterium and impurity injection. We compare several computer models with results from these experiments to predict performance and thereby guide designs of radiative divertors for future machines. We have estimated impurity radiation using calculations of the background plasma with a two-dimensional fluid code (B2 or LEDGE) coupled with models of impurity radiation. The DEGAS code has been used to estimate hydrogenic transport, charge exchange and radiation losses. Estimates of impurity transport are provided by 11/1-dimensional models and calculations of impurity frictional-force terms. These model, results are in qualitative agreement with the ∼1 MW reduction of measured divertor power in DIII-D during divertor impurity puffing experiments. Specific designs, including engineering details, for applications to DIII-D and ITER will be discussed.


Physics of fluids. B, Plasma physics | 1993

Helium, iron, and electron particle transport and energy transport studies on the Tokamak Fusion Test Reactor

E. J. Synakowski; P.C. Efthimion; G. Rewoldt; B. C. Stratton; W. M. Tang; B. Grek; K. W. Hill; R. Hulse; D. Johnson; M.W. Kissick; D.K. Mansfield; D. McCune; David Mikkelsen; H. Park; A. T. Ramsey; M.H. Redi; S.D. Scott; G. Taylor; J. Timberlake; M. C. Zarnstorff

Results from helium, iron, and electron transport studies on the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. 26, 11 (1984)] in L‐mode and supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the supershot. The helium profile shape is consistent with predictions from quasilinear electrostatic drift‐wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the supershot, differences are found in the L mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of 3 larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.


Review of Scientific Instruments | 1989

High‐resolution bent‐crystal spectrometer for the ultrasoft x‐ray region

P. Beiersdorfer; S. von Goeler; M. Bitter; K. W. Hill; R. Hulse; R. S. Walling

A multichannel vacuum Bragg‐crystal spectrometer has been developed for high‐resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 A. The spectrometer employs a bent crystal in Johann geometry and a microchannel‐plate‐intensified photodiode diode array. The instrument is capable of measuring high‐resolution spectra (λ/Δλ≊3000) with fast time resolution (4 ms per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is Δλ/λ0=15% at λ0=8 A. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time‐ and space‐resolved measurements of the n=3–2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultrasoft x‐ray spectrometer has thus enabled us to demonst...


Nuclear Fusion | 1989

Impurity transport in ohmically heated TFTR plasmas

B. C. Stratton; R.J. Fonck; R. Hulse; A. T. Ramsey; J. Timberlake; P.C. Efthimion; E. D. Fredrickson; B. Grek; K. W. Hill; D. Johnson; D.K. Mansfield; H. Park; F.J. Stauffer; G. Taylor

The paper presents a study of impurity transport in ohmically heated TFTR plasmas by computer modelling of VUV line emissions from impurities injected using the laser blow-off technique. The results are sensitive to uncertainties in the ionization and recombination rates used in the modelling and, therefore, only a spatially averaged diffusion coefficient and parameterized convective velocity can be measured. Measurements of these transport parameters are presented for deuterium and helium discharges with Ip = 0.8−2.5 MA, e = (0.6-6.0) × 1019 m−3 and Zeff = 2-6. The diffusion coefficients are found to be in the range of 0.5-1.5 m2 s−1, considerably larger than neoclassical values. Non-zero inward convective velocities are necessary to fit the data in most cases. No dependence of the diffusion coefficient on injected element, working gas species or plasma current is found, but, at a given current, the diffusion coefficient in plasmas near the density limit is smaller by approximately a factor of two than in discharges with e < 3 × 1019 m−3.


Plasma Physics and Controlled Fusion | 1987

High power neutral beam heating experiments on TFTR with balanced and unbalanced momemtum input

M. Bitter; V. Arunasalam; M.G. Bell; S Bosch; N. Bretz; R.V. Budny; C.E. Bush; D. Dimock; H.F. Dylla; P.C. Efthimion; R.J. Fonck; E. D. Fredrickson; H. P. Furth; G. Gammel; R.J. Goldston; B. Grek; L R Grisham; G. W. Hammett; Ken-ichi Hattori; R.J. Hawryluk; H. W. Hendel; K. W. Hill; E. Hinnov; T Hirayama; R B Howell; R. Hulse; H. Hsuan; K P Jaehnig; D.L. Jassby; F. Jobes

New long-pulse ion sources have been employed to extend the neutral beam pulse on TFTR from 0.5 sec to 2.0 sec. This made it possible to study the long-term evolution of supershots at constant current and to perform experiments in which the plasma current was ramped up during the heating pulse. Experiments were conducted with co and counter injection as well as with nearly balanced injection of deuterium beams up to a total power of 20 MW. The best results, i.e., central ion temperatures Tio > 25 keV and neo τE Tio values of 3 × 1020 keV sec m-3, were obtained with nearly balanced injection. The central toroidal plasma rotation velocity scales in a linear-offset fashion with beam power and density. The scaling of the inferred global momentum confinement time with plasma parameters is inconsistent with the predictions of the neoclassical theory of gyroviscous damping. An interesting plasma regime with properties similar to the H-mode has been observed for limiter plasmas with edge qa just above 3 and 2.5.

Collaboration


Dive into the R. Hulse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Grek

Princeton University

View shared research outputs
Top Co-Authors

Avatar

D. Johnson

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge