Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. J. Cappallo is active.

Publication


Featured researches published by R. J. Cappallo.


Nature | 2008

Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre

Sheperd S. Doeleman; Jonathan Weintroub; Alan E. E. Rogers; R. L. Plambeck; Robert Freund; Remo P. J. Tilanus; Per Friberg; L. M. Ziurys; James M. Moran; B. E. Corey; K. Young; Daniel L. Smythe; Michael Titus; D. P. Marrone; R. J. Cappallo; Douglas C.-J. Bock; Geoffrey C. Bower; Richard A. Chamberlin; Gary R. Davis; T. P. Krichbaum; James W. Lamb; H. L. Maness; Arthur Niell; Alan L. Roy; Peter A. Strittmatter; D. Werthimer; Alan R. Whitney; David P. Woody

The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.


Publications of the Astronomical Society of Australia | 2013

Science with the Murchison Widefield Array

Judd D. Bowman; Iver H. Cairns; David L. Kaplan; Tara Murphy; Divya Oberoi; Lister Staveley-Smith; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; Shea Brown; John D. Bunton; Adam J. Burgasser; R. J. Cappallo; Shami Chatterjee; B. E. Corey; Anthea J. Coster; Avinash A. Deshpande; L. deSouza; D. Emrich; Philip J. Erickson; R. Goeke; B. M. Gaensler; L. J. Greenhill; L. Harvey-Smith; B. J. Hazelton; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; J. Kasper

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.


Monthly Notices of the Royal Astronomical Society | 2014

wsclean: an implementation of a fast, generic wide-field imager for radio astronomy

A. R. Offringa; B. McKinley; Natasha Hurley-Walker; F. Briggs; R. B. Wayth; David L. Kaplan; M. E. Bell; L. Feng; A. R. Neben; J. D. Hughes; Jonghwan Rhee; Tara Murphy; N. D. R. Bhat; G. Bernardi; Judd D. Bowman; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; A. Ewall-Wice; B. M. Gaensler; R. Goeke; L. J. Greenhill; B. J. Hazelton; L. Hindson; M. Johnston-Hollitt; Daniel C. Jacobs; J. Kasper; E. Kratzenberg; E. Lenc

Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASAs w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.


Science | 1983

Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis

Alan E. E. Rogers; R. J. Cappallo; H. F. Hinteregger; James I. Levine; Edwin F. Nesman; John C. Webber; Alan R. Whitney; T. A. Clark; Chopo Ma; J. W. Ryan; B. E. Corey; Charles C. Counselman; Tomas A. Herring; Irwin I. Shapiro; Curtis A. Knight; D. B. Shaffer; Nancy R. Vandenberg; Richard Lacasse; Robert Mauzy; Benno Rayhrer; Bruce R. Schupler; J. C. Pigg

The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.


Monthly Notices of the Royal Astronomical Society | 2017

GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey – I. A low-frequency extragalactic catalogue

Natasha Hurley-Walker; J. R. Callingham; Paul Hancock; Thomas M. O. Franzen; L. Hindson; A. D. Kapińska; J. Morgan; A. R. Offringa; R. B. Wayth; C. Wu; Q. Zheng; Tara Murphy; M. E. Bell; K. S. Dwarakanath; Bi-Qing For; B. M. Gaensler; M. Johnston-Hollitt; E. Lenc; P. Procopio; Lister Staveley-Smith; Ron D. Ekers; Judd D. Bowman; F. Briggs; R. J. Cappallo; Avinash A. Deshpande; L. J. Greenhill; Brynah J. Hazelton; David L. Kaplan; Colin J. Lonsdale; S. R. McWhirter

Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey and present the resulting extragalactic catalogue, utilizing the first year of observations. The catalogue covers 24 831 square degrees, over declinations south of +30° and Galactic latitudes outside 10° of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307 455 radio sources with 20 separate flux density measurements across 72–231 MHz, selected from a time- and frequency-integrated image centred at 200 MHz, with a resolution of ≈ 2 arcmin. Over the catalogued region, we estimate that the catalogue is 90 per cent complete at 170 mJy and 50 per cent complete at 55 mJy and large areas are complete at even lower flux density levels. Its reliability is 99.97 per cent above the detection threshold of 5σ, which itself is typically 50 mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date and calibrate the low-frequency flux density scale of the southern sky to better than 10 per cent. This paper presents details of the flagging, imaging, mosaicking and source extraction/characterization, as well as estimates of the completeness and reliability. All source measurements and images are available online. 1 This is the first in a series of publications describing the GLEAM survey results.


Publications of the Astronomical Society of Australia | 2015

GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey

R. B. Wayth; E. Lenc; M. E. Bell; J. R. Callingham; K. S. Dwarakanath; Thomas M. O. Franzen; Bi Qing For; B. M. Gaensler; Paul Hancock; L. Hindson; Natasha Hurley-Walker; C. A. Jackson; M. Johnston-Hollitt; A. D. Kapińska; B. McKinley; J. Morgan; A. R. Offringa; P. Procopio; Lister Staveley-Smith; C. Wu; Q. Zheng; Cathryn M. Trott; G. Bernardi; Judd D. Bowman; F. Briggs; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; R. Goeke

© Astronomical Society of Australia 2015; published by Cambridge University Press. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/


The Astrophysical Journal | 2015

Foregrounds in wide-field redshifted 21 cm power spectra

Nithyanandan Thyagarajan; Daniel C. Jacobs; Judd D. Bowman; N. Barry; A. P. Beardsley; G. Bernardi; F. Briggs; R. J. Cappallo; P. Carroll; B. E. Corey; A. de Oliveira-Costa; Joshua S. Dillon; D. Emrich; A. Ewall-Wice; L. Feng; R. Goeke; L. J. Greenhill; B. J. Hazelton; Jacqueline N. Hewitt; Natasha Hurley-Walker; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; Han-Seek Kim; P. Kittiwisit; E. Kratzenberg; E. Lenc; J. Line; Abraham Loeb; Colin J. Lonsdale

Detection of 21 cm emission of H I from the epoch of reionization, at redshifts > z 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H I signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the “foreground wedge” in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity.


Science | 2015

Resolved magnetic-field structure and variability near the event horizon of Sagittarius A∗

Michael D. Johnson; Vincent L. Fish; Sheperd S. Doeleman; D. P. Marrone; R. L. Plambeck; J. F. C. Wardle; Kazunori Akiyama; Keiichi Asada; Christopher Beaudoin; L. Blackburn; R. Blundell; Geoffrey C. Bower; Christiaan Brinkerink; Avery E. Broderick; R. J. Cappallo; Andrew A. Chael; Geoffrey Crew; Jason Dexter; Matt Dexter; Robert Freund; Per Friberg; Roman Gold; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; Michael Kosowsky; T. P. Krichbaum; James W. Lamb; Abraham Loeb

Magnetic fields near the event horizon Astronomers have long sought to examine a black holes event horizon—the boundary around the black hole within which nothing can escape. Johnson et al. used sophisticated interferometry techniques to combine data from millimeter-wavelength telescopes around the world. They measured polarization just outside the event horizon of Sgr A*, the supermassive black hole at the center of our galaxy, the Milky Way. The polarization is a signature of ordered magnetic fields generated in the accretion disk around the black hole. The results help to explain how black holes accrete gas and launch jets of material into their surroundings. Science, this issue p. 1242 Magnetic fields around the event horizon of a supermassive black hole have been probed. Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields.


Monthly Notices of the Royal Astronomical Society | 2013

The EoR sensitivity of the murchison widefield array

A. P. Beardsley; B. J. Hazelton; M. F. Morales; W. Arcus; David G. Barnes; G. Bernardi; Judd D. Bowman; F. Briggs; John D. Bunton; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; L. deSouza; D. Emrich; B. M. Gaensler; R. Goeke; L. J. Greenhill; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; B. B. Kincaid; R. Koenig; E. Kratzenberg; Colin J. Lonsdale; M. J. Lynch; S. R. McWhirter; D. A. Mitchell; Edward H. Morgan

Using the final 128 antenna locations of the MurchisonWidefield Array (MWA), we calculate its sensitivity to the epoch of reionization (EoR) power spectrum of redshifted 21 cm emission for a fiducial model and provide the tools to calculate the sensitivity for any model. Our calculation takes into account synthesis rotation, chromatic and asymmetrical baseline effects, and excludes modes that will be contaminated by foreground subtraction. For the fiducial model, the MWA will be capable of a 14 σ detection of the EoR signal with one full season of observation on two fields (900 and 700 h).


Science | 1986

Very Long Baseline Interferometric Observations Made with an Orbiting Radio Telescope

G. S. Levy; R.P. Linfield; J.S. Ulvestad; C. D. Edwards; J. F. Jordan; S.J. Di Nardo; C.S. Christensen; R. A. Preston; L. Skjerve; L.R. Stavert; Bernard F. Burke; Alan R. Whitney; R. J. Cappallo; Alan E. E. Rogers; K. Blaney; M. J. Maher; C.H. Ottenhoff; D.L. Jauncey; W.L. Peters; T. Nishimura; T. Hayashi; T. Takano; T. Yamada; H. Hirabayashi; M. Morimoto; M. Inoue; T. Shiomi; N. Kawaguchi; H. Kunimori

An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64- meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.

Collaboration


Dive into the R. J. Cappallo's collaboration.

Top Co-Authors

Avatar

Judd D. Bowman

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

F. Briggs

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Johnston-Hollitt

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

B. J. Hazelton

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Colin J. Lonsdale

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. E. Corey

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge