Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R.J. Cuss is active.

Publication


Featured researches published by R.J. Cuss.


Mineralogical Magazine | 2012

Gas flow in Callovo-Oxfordian claystone (COx): results from laboratory and field-scale measurements

Jon F. Harrington; R. de La Vaissière; D.J. Noy; R.J. Cuss; Jean Talandier

Abstract To understand the fate and impact of gas produced within a repository for radioactive waste, a series of laboratory and field scale experiments have been performed on the Callovo-Oxfordian claystone (COx), the proposed host rock for the French repository. Results show the movement of gas is through a localized network of pathways, whose properties vary temporarily and spatially within the claystone. Significant evidence exists from detailed laboratory studies for the movement of gas along highly unstable pathways, whose aperture and geometry vary as a function of local stress, gas and porewater pressures. The coupling of these parameters results in the development of significant time-dependent effects, impacting on all aspects of COx behaviour, from gas breakthrough time, to the control of deformation processes. Variations in gas entry, breakthrough and steady-state pressures are indicative of microstructural heterogeneity which exerts an important control on the movement of gas. The localization of gas flow is also evident in preliminary results from the large scale gas injection test (PGZ) where gas flow is initially focussed within the excavation damaged zone (EDZ), which acts as a preferential pathway for gas. Numerical models based on conventional two-phase flow theory are unable to adequately describe the detailed observations from laboratory tests.


Mineralogical Magazine | 2012

Evidence for gas-induced pathways in clay using a nanoparticle injection technique

Jon F. Harrington; A.E. Milodowski; C. C. Graham; Jeremy Rushton; R.J. Cuss

Abstract Corrosion, water radiolysis and microbial degradation will result in the generation of gas within repositories designed for the geological disposal of high-level radioactive waste. It is therefore crucial in the design of such facilities that the relevant mechanisms allowing gas migration through repository materials, both engineered barriers and clay-based candidate host rocks, are correctly identified. In Belgium, the Boom Clay represents a candidate host material for which the advective gas breakthrough characteristics and transport properties have been extensively tested and are well defined by numerous studies. The Boom Clay displays a significant capacity for self-sealing and both laboratory and field tests indicate that advective gas transport occurs not by visco-capillary flow, but instead through the formation of pressure-induced dilatant pathways. In this study, we present results from a gas injection test designed to demonstrate the presence of these features by injecting nanoparticulate tracers with helium gas into a sample of Boom Clay. The results provide conclusive evidence for the formation of transient, dilatant gas pathways within a candidate clay-based host rock. This technique provides a novel diagnostic tool for the identification of processes governing multi-phase flow, supporting robust long-term assessments of repository performance.


Geological Society, London, Special Publications | 2014

Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone

R.J. Cuss; Jon F. Harrington; Richard Giot; Christophe Auvray

Abstract Understanding the mechanisms controlling the advective movement of gas and its potential impact on a geological disposal facility (GDF) for radioactive waste is important to performance assessment. In a clay-based GDF, four primary phenomenological models can be defined to describe gas flow: (i) diffusion and/or solution within interstitial water; (ii) visco-capillary (or two-phase) flow in the original porosity of the fabric; (iii) flow along localized dilatant pathways (micro-fissuring); and (iv) gas fracturing of the rock. To investigate which mechanism(s) control the movement of gas, two independent experimental studies on Callovo-Oxfordian claystone (COx) have been undertaken at the British Geological Survey (BGS) and LAEGO–ENSG Nancy (LAEGO). The study conducted at BGS used a triaxial apparatus specifically designed to resolve very small volumetric (axial and radial) strains potentially associated with the onset of gas flow. The LAEGO study utilized a triaxial setup with axial and radial strains measured by strain gauges glued to the sample. Both studies were conducted on COx at in situ stresses representative of the Bure Underground Research Laboratory (URL), with flux and pressure of gas and water carefully monitored throughout long-duration experiments. A four-stage model has been postulated to explain the experimental results. Stage 1: gas enters at the gas entry pressure. Gas propagation is along dilatant pathways that exploit the pore network of the material. Around each pathway the fabric compresses, which may lead to localized movement of water away from the pathways. Stage 2: the dendritic flow path network has reached the mid-plane of the sample, resulting in acceleration of the observed radial strain. During this stage, outflow from the sample also develops. Stage 3: gas has reached the backpressure end of the sample with end-to-end movement of gas. Dilation continues, indicating that gas pathway numbers have increased. Stage 4: gas-fracturing occurs with a significant tensile fracture forming, resulting in failure of the sample. Both studies clearly showed that as gas started to move through the COx, the sample underwent mechanical dilation (i.e. an increase in sample volume). Under in situ conditions, the onset of dilation (micro-fissuring) is a necessary precursor for the advective movement of gas.


Mineralogical Magazine | 2012

The role of stress history on the flow of fluids through fractures

S. Sathar; H.J. Reeves; R.J. Cuss; Jon F. Harrington

Abstract Understanding flow along fractures and faults is of importance to the performance assessment (PA) of a geological disposal facility (GDF) for radioactive waste. Flow can occur along pre-existing fractures in the host-rock or along fractures created during the construction of the GDF within the excavation damage zone (EDZ). The complex fracture network will have a range of orientations and will exist within a complex stress regime. Critical stress theory suggests that fractures close to localized shear failure are critically stressed and therefore most conductive to fluid flow. Analysis of fault geometry and stress conditions at Sellafield has revealed that no features were found to be, or even close to being, classified as critically stressed, despite some being conductive. In order to understand the underlying reasons why non-critically stressed fractures were conductive a series of laboratory experiments were performed. A bespoke angled shear rig (ASR) was built in order to study the relationship between fluid flow (water and gas) through a fracture surface as a function of normal load. Fluid flow reduced with an increase in normal load, as expected. During unloading considerable hysteresis was seen in flow and shear stress. Fracture flow was only partially recovered for water injection, whereas gas flow increased remarkably during unloading. The ratio of shear stress to normal stress seems to control the fluid flow properties during the unloading stage of the experiment demonstrating its significance in fracture flow. The exhumation of the Sellafield area during the Palaeogene-Neogene resulted in considerable stress relaxation and in fractures becoming non-critically stressed. The hysteresis in shear stress during uplift has resulted in faults remaining, or becoming, conductive. The field and laboratory observations illustrate that understanding the stress-history of a fractured rock mass is essential, and a mere understanding of the current stress regime is insufficient to estimate the flow characteristics of present-day fractures.


Mineralogical Magazine | 2012

Gas migration experiments in bentonite: implications for numerical modelling

C. C. Graham; Jon F. Harrington; R.J. Cuss; Patrik Sellin

Abstract In the Swedish KBS-3 repository concept, there is potential for gas to be generated from corrosion of ferrous materials under anoxic conditions, combined with the radioactive decay of the waste and radiolysis of water. A full understanding of the probable behaviour of this gas phase within the engineered barrier system (EBS) is therefore required for performance assessment. We demonstrate key features from gas transport experiments on pre-compacted Mx80 bentonite, under laboratory and field conditions, and discuss their implications in terms of a conceptual model for gas migration behaviour. On both scales, major gas entry is seen to occur close to the sum of the porewater and swelling pressures of the bentonite. In addition, gas pressure at breakthrough is profoundly sensitive to the number and location of available sinks for gas escape. Observations of breakthrough can be explained by the creation of dilatational pathways, resulting in localized changes in the monitored porewater pressures and total stresses. These pathways are highly unstable, evolving spatially and temporally, and must consequently influence the gas permeability as their distribution/geometry develops. Such observations are poorly embodied by conventional concepts of two-phase flow, which do not fully represent the key processes involved. Although dilatancy based models provide a better description of these processes, the paucity of data limits further development and validation of these models at present.


Mineralogical Magazine | 2015

The visualization of flow paths in experimental studies of clay-rich materials

Andrew C. Wiseall; R.J. Cuss; C. C. Graham; Jon F. Harrington

Abstract One of the most challenging aspects of understanding the flow of gas and water during testing in clay-rich low-permeability materials is the difficulty in visualizing localized flow. Whilst understanding has been increased using X-ray Computed-tomography (CT) scanning, synchrotron X-ray imaging and Nuclear Magnetic Resonance (NMR) imaging, real-time testing is problematic under realistic in situ conditions confining pressures, which require steel pressure vessels. These methods tend not to have the nano-metre scale resolution necessary for clay mineral visualization, and are generally not compatible with the long duration necessary to investigate flow in such materials. Therefore other methods are necessary to visualize flow paths during post-mortem analysis of test samples. Several methodologies have been established at the British Geological Survey (BGS), in order to visualize flow paths both directly and indirectly. These include: (1) the injection of fluorescein-stained water or deuterium oxide; (2) the introduction of nanoparticles that are transported by carrier gas; (3) the use of radiologically tagged gas; and (4) the development of apparatus for the direct visualization of clay. These methodologies have greatly increased our understanding of the transport of water and gas through intact and fractured clay-rich materials. The body of evidence for gas transport through the formation of dilatant pathways is now considerable. This study presents observations using a new apparatus to directly visualize the flow of gas in a kaolinite paste. The results presented provide an insight into the flow of gas in clay-rich rocks. The flow of gas through dilatant pathways has been shown in a number of argillaceous materials (Angeli et al., 2009; Autio et al., 2006; Cuss et al., 2014; Harrington et al., 2012). These pathways are pressure induced and an increase in gas pressure leads to the dilation of pathways. Once the gas breakthrough occurs, pressure decreases and pathways begin to close. This new approach is providing a unique insight into the complex processes involved during the onset, development and closure of these dilatant gas pathways.


Mineralogical Magazine | 2012

Observations of heterogeneous pore pressure distributions in clay-rich materials

R.J. Cuss; Jon F. Harrington; C. C. Graham; S. Sathar; A.E. Milodowski

Abstract The concept of effective stress is one of the basic tenets of rock mechanics where the stress acting on a rock can be viewed as the total stress minus the pore water pressure. In many materials, including clay-rich rocks, this relationship has been seen to be imperfect and a coefficient (χ) is added to account for the mechanical properties of the clay matrix. Recent experimental results during the flow testing (both gas and water) of several rocks (Callovo-Oxfordian claystone, Opalinus Clay, Boom Clay) and geomaterials (bentonite, kaolinite) has given evidence for stable high pressure differentials. The design of the experiments allows multiple measurements of pore pressure, which commonly shows a complex distribution for several different experimental geometries. The observed stable high pressure differentials and heterogeneous pore pressure distribution makes the describing of stress states in terms of effective stress complex. Highly localized pore pressures can be sustained by argillaceous materials and concepts of evenly distributed pore pressures throughout the sample (i.e. conventional effective stress) do not fit many clay-rich rocks if the complexities observed on the micro-scale are not incorporated, especially when considering the case of gas flow.


Geological Society, London, Special Publications | 1999

The application of microgravity in industrial archaeology: an example from the Williamson tunnels, Edge Hill, Liverpool

R.J. Cuss; Peter Styles

Abstract This article presents the results of a high-resolution microgravity survey which was successful in delineating the 150-year old Williamson tunnels beneath inner-city Liverpool, England. The tunnels, which date from the Napoleonic Wars, lie at depths of c. 5 to 15 metres, and are poorly mapped because of several phases of later development and subsequent dereliction. The ‘brown-field’ nature of this site created substantial noise signals which required the application of careful terrain corrections and second derivative and Euler deconvolution methods to isolate and identify the tunnel signatures. Successful delineation was only possible because of a comprehensive initial desk study and prior modelling, which assessed the likely depths and conditions of the impassable tunnels and allowed appropriate techniques and survey parameters to be determined.


Journal of Geophysical Research | 2015

An experimental study of the flow of gas along synthetic faults of varying orientation to the stress field: Implications for performance assessment of radioactive waste disposal

R.J. Cuss; Jon F. Harrington; D.J. Noy; Shanvas Sathar; Simon Norris

Critical stress theory states that fault transmissivity is strongly dependent upon orientation with respect to the stress tensor. This paper describes an experimental study aimed at verifying critical stress theory using a bespoke angled shear rig designed to examine the relationship between gas flows along a kaolinite-filled synthetic fault as a function of fault dip. A total of 22 gas injection experiments were conducted on faults oriented 0°, 15°, 30°, and 45° to horizontal; both with and without active shear. Gas flow was seen to be complex; repeat gas injection testing showed a consistent gas entry pressure but considerably different, nonrepeatable, gas peak or breakthrough pressure. Gas flow occurred along discrete, dilatant pathways. The physics governing the pressure at which these features formed was repeatable; however, permeability was dependent on the number, distribution, and geometry of the resultant pathways. The nonrepeatable gas response suggests that the number of pathways was dependent on very subtle variations in gouge properties. No fault orientations were seen to exhibit nonflow characteristics, although critical stress theory predicted that two of the investigated fault angles should be effective seals. However, a small variation in gas entry pressure was seen with fault angle as a result of varying normal and shear stress acting on the gouge material. Shear was seen to enhance gas movement by reducing gas entry pressure and increased permeability once gas became mobile. Therefore, in kaolinite gouge-filled faults, shear is not an effective self-sealing mechanism to gas flow.


Developments in Clay Science | 2015

Gas Transfer Through Clay Barriers

Alexandra Amann-Hildenbrand; B.M. Krooss; Jon F. Harrington; R.J. Cuss; Catherine A. Davy; Frédéric Skoczylas; Elke Jacops; N. Maes

Gas transport through clay-rocks can occur by different processes that can be basically subdivided into pressure-driven flow of a bulk gas phase and transport of dissolved gas either by molecular diffusion or advective water flow (Figure 1, Marschall et al., 2005). The relative importance of these transport mechanisms depends on the boundary conditions and the scale of the system. Pressure-driven volume flow (“Darcy flow”) of gas is the most efficient transport mechanism. It requires, however, pressure gradients that are sufficiently large to overcome capillary forces in the typically water-saturated rocks (purely gas-saturated argillaceous rocks are not considered in the present context). These pressure gradients may form as a consequence of the gravity field (buoyancy, compaction) or by gas generation processes (thermogenic, microbial, radiolytic). Dissolved gas may be transported by water flow along a hydraulic gradient. This process is not affected by capillary forces but constrained by the solubility of the gas. It has much lower transport efficiency than bulk gas phase flow. Molecular diffusion of dissolved gas, finally, is occurring essentially without constraints, ubiquitously and perpetually. Effective diffusion distances are, however, proportional to the square root of time, which limits the relevance of this transport process to the range of tens to hundreds of metres on a geological time scale (millions of years). 2 Process understanding and the quantification of the controlling parameters, like diffusion coefficients, capillary gas breakthrough pressures and effective gas permeability coefficients, is of great importance for up-scaling purposes in different research disciplines and applications. During the past decades, gas migration through fully water-saturated geological clay-rich barriers has been investigated extensively (Thomas et al., 1968, Pusch and Forsberg, 1983; Horseman et al., 1999; Galle, 2000; Hildenbrand et al., 2002; Marschall et al., 2005; Davy et al., 2009; Harrington et al., 2009, 2012a, 2014). All of these studies aimed at the analysis of experimental data determined for different materials (rocks of different lithotype, composition, compaction state) and pressure/temperature conditions. The clay-rocks investigated in these studies, ranged from unconsolidated to indurated clays and shales, all characterised by small pores (2-100 nm) and very low hydraulic conductivity (K < 10-12 m·s-1) or permeability coefficients (k < 10-19 m²). Studies concerning radioactive waste disposal include investigations of both the natural host rock formation and synthetic/engineered backfill material at a depth of a few hundred meters (IAEA, 2003, 2009). Within a geological disposal facility, hydrogen is generated by anaerobic corrosion of metals and through radiolysis of water (Rodwell et al., 1999; Yu and Weetjens, 2009). Additionally, methane and carbon dioxide are generated by microbial degradation of organic wastes (Rodwell et al., 1999; Ortiz et al., 2002; Johnson, 2006; Yu and Weetjens, 2009). The focus of carbon capture and storage (CCS) studies is on the analysis of the long-term sealing efficiency of lithologies above depleted reservoirs or saline aquifers, typically at larger depths (hundreds to thousands of meters). During the last decade, several studies were published on the sealing integrity of clay-rocks to carbon dioxide (Hildenbrand et al., 2004; Li et al., 2005; Hangx et al., 2009; Harrington et al., 2009; Skurtveit et al., 2012; Amann-Hildenbrand et al., 2013). In the context of petroleum system analysis, a significant volume of research has been undertaken regarding gas/oil expulsion mechanisms from sources rocks during burial history (Tissot & Pellet, 1971; Appold & Nunn, 2002), secondary migration (Luo et al., 2008) and the capillary sealing capacity of caprocks overlying natural gas accumulations (Berg, 1975; Schowalter, 1979; Krooss, 1992; Schlomer and Kross, 2004; Li et al., 2005; Berne et al., 2010). Recently, more attention has been paid to investigations of the transport efficiency of shales in the context of oil/gas shale production (Bustin et al., 2008; Eseme et al., 2012; Amann-Hildenbrand et al., 2012; Ghanizadeh et al., 2013, 2014). Analysis of the migration mechanisms within partly unlithified strata becomes important when explaining the 3 origin of overpressure zones, sub-seafloor gas domes and gas seepages (Hovland & Judd, 1988; Boudreau, 2012). The conduction of experiments and data evaluation/interpretation requires a profound process understanding and a high level of experience. The acquisition and preparation of adequate samples for laboratory experiments usually constitutes a major challenge and may have serious impact on the representativeness of the experimental results. Information on the success/failure rate of the sample preparation procedure should therefore be provided. Sample specimens “surviving” this procedure are subjected to various experimental protocols to derive information on their gas transport properties. The present overview first presents the theoretical background of gas diffusion and advective flow, each followed by a literature review (sections 2 and 3). Different experimental methods are described in sections 4.1 and 4.2. Details are provided on selected experiments performed at the Belgian Nuclear Research Centre (SCK-CEN, Belgium), Ecole Centrale de Lille (France), British Geological Survey (UK), and at RWTH-Aachen University (Germany) (section 4.3). Experimental data are discussed with respect to different petrophysical parameters outlined above: i) gas diffusion, ii) evolution of gas breakthrough, iii) dilation-controlled flow, and iv) effective gas permeability after breakthrough. These experiments were conducted under different pressure and temperature conditions, depending on sample type, burial depth and research focus (e.g. radioactive waste disposal, natural gas exploration, or carbon dioxide storage). The interpretation of the experimental results can be difficult and sometimes a clear discrimination between different mechanisms (and the controlling parameters) is not possible. This holds, for instance, for gas breakthrough experiments where the observed transport can be interpreted as intermittent, continuous, capillary- or dilation-controlled flow. Also, low gas flow rates through samples on the length-scale of centimetres can be equally explained by effective two-phase flow or diffusion of dissolved gas.

Collaboration


Dive into the R.J. Cuss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.J. Noy

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David Beamish

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

C. C. Graham

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.G. Jones

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mari Lahti

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H.J. Reeves

British Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge