Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. J. Dupuis is active.

Publication


Featured researches published by R. J. Dupuis.


Classical and Quantum Gravity | 2006

Status of the GEO600 detector

H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant

Of all the large interferometric gravitational-wave detectors, the German/British project GEO600 is the only one which uses dual recycling. During the four weeks of the international S4 data-taking run it reached an instrumental duty cycle of 97% with a peak sensitivity of 7 × 10−22 Hz−1/2 at 1 kHz. This paper describes the status during S4 and improvements thereafter.


Physical Review D | 2005

Bayesian estimation of pulsar parameters from gravitational wave data

R. J. Dupuis; G. Woan

We present a method of searching for, and parametrizing, signals from known radio pulsars in data from interferometric gravitational wave detectors. This method has been applied to data from the LIGO and GEO 600 detectors to set upper limits on the gravitational wave emission from several radio pulsars. Here we discuss the nature of the signal and the performance of the technique on simulated data. We show how to perform a coherent multiple detector analysis and give some insight into the covariance between the signal parameters.


Proceedings of SPIE | 2004

The status of GEO 600

K. A. Strain; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Goßler; A. Grant; H. Grote; S. Grunewald; J. Harms

The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.


Physical Review D | 2010

Implementation of barycentric resampling for continuous wave searches in gravitational wave data

Pinkesh Patel; X. Siemens; R. J. Dupuis; J. Betzwieser

We describe an efficient implementation of a coherent statistic for searches of continuous gravitational wave from neutron stars. The algorithm works by transforming the data taken by a gravitational wave detector from a moving Earth bound frame to one that sits at the Solar System barycenter. Many practical difficulties arise in the implementation of this algorithm, some of which have not been discussed previously. These difficulties include constraints of small computer memory, discreteness of the data, losses due to interpolation, and gaps in real data. This implementation is considerably more efficient than previous implementations of these kinds of searches on Laser Interferometer Gravitational Wave (LIGO) detector data. The speed-up factors range from 10, when applied to Einstein@Home, to about 2000 for targeted searches which integrate over months of data.


Classical and Quantum Gravity | 2004

Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method

Richard Umstätter; Renate Meyer; R. J. Dupuis; J. Veitch; G. Woan; N. Christensen

We present a Bayesian Markov chain Monte Carlo technique for estimating the astrophysical parameters of gravitational radiation signals from a neutron star in laser interferometer data. This computational algorithm can estimate up to six unknown parameters of the target, including the rotation frequency and frequency derivative, using reparametrization, delayed rejection and simulated annealing. We highlight how a simple extension of the method, distributed over multiple computer processors, will allow for a search over a narrow frequency band. The ultimate goal of this research is to search for sources at known locations, but uncertain spin parameters; an example would be SN1987A.


Classical and Quantum Gravity | 2004

Commissioning, characterization and operation of the dual-recycled GEO 600

J. R. Smith; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms

The German-British laser-interferometric gravitational-wave detector GEO 600 is currently being commissioned as part of a worldwide network of gravitational-wave detectors. GEO 600 recently became the first kilometre-scale interferometer to employ dual recycling-an optical configuration that combines power recycling and signal recycling. We present a brief overview of the commissioning of this dual-recycled interferometer, the performance results achieved during a subsequent extended data-taking period, and the plans intended to bring GEO 600 to its final configuration.


Gravitational wave and particle astrophysics detectors | 2004

The Status of GEO600

K. A. Strain; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms

The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.


Classical and Quantum Gravity | 2003

A report on the status of the GEO 600 gravitational wave detector

M. Hewitson; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; Andreas Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms; Gerhard Heinzel; I. S. Heng; A. Heptonstall; M. Heurs

GEO 600 is an interferometric gravitational wave detector with 600 m arms, which will employ a novel, dual-recycled optical scheme allowing its optical response to be tuned over a range of frequencies (from ~100 Hz to a few kHz). Additional advanced technologies, such as multiple pendulum suspensions with monolithic bottom stages, make the anticipated sensitivity of GEO 600 comparable to initial detectors with kilometre arm lengths. This paper discusses briefly the design of GEO, reports on the status of the detector up to the end of 2002 with particular focus on participation in coincident engineering and science runs with LIGO detectors. The plans leading to a fully optimized detector and participation in future coincident science runs are briefly outlined.


Classical and Quantum Gravity | 2002

Data acquisition and detector characterization of GEO600

Karsten Kötter; C. Aulbert; S. Babak; R. Balasubramanian; Steven J. Berukoff; S. Bose; D. Churches; Carlo Nicola Colacino; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; A. Freise; H. Grote; Gerhard Heinzel; M. Hewitson; J. Hough; H. Lück; M. Malec; Soumya Mohanty; Soma Mukherjee; S. Nagano; M. A. Papa; D. I. Robertson; B. S. Sathyaprakash; Bernard F. Schutz; A. M. Sintes; K. A. Strain; I. Taylor; A. Vecchio

The data acquisition system of the gravitational wave detector GEO600 is recording the first data now. Data from detector subsystems and environmental channels are being acquired. The data acquisition system is described and first results from the detector characterization work are being presented. We analysed environmental influences on the detector to determine noise propagation through the detector. Long-term monitoring allowed us to see long-timescale drifts in subsystems.


arXiv: General Relativity and Quantum Cosmology | 2006

Targeted searches for gravitational waves from radio pulsars

R. J. Dupuis

An overview of the searches for gravitational waves from radio pulsars with LIGO and GEO is given. We give a brief description of the algorithm used in these targeted searches and provide end-to-end validation of the technique through hardware injections. We report on some aspects of the recent S3/S4 LIGO and GEO search for signals from several pulsars. The gaussianity of narrow frequency bands of S3/S4 LIGO data, where pulsar signals are expected, is assessed with Kolmogorov-Smirnov tests. Preliminary results from the S3 run with a network of four detectors are given for pulsar J1939+2134.

Collaboration


Dive into the R. J. Dupuis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Grant

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

B. Barr

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge