Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. J. Hawken is active.

Publication


Featured researches published by R. J. Hawken.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Association weight matrix for the genetic dissection of puberty in beef cattle

M. R. S. Fortes; Antonio Reverter; Y. Zhang; Eliza Collis; Shivashankar H. Nagaraj; N.N. Jonsson; Kishore Prayaga; Wes Barris; R. J. Hawken

We describe a systems biology approach for the genetic dissection of complex traits based on applying gene network theory to the results from genome-wide associations. The associations of single-nucleotide polymorphisms (SNP) that were individually associated with a primary phenotype of interest, age at puberty in our study, were explored across 22 related traits. Genomic regions were surveyed for genes harboring the selected SNP. As a result, an association weight matrix (AWM) was constructed with as many rows as genes and as many columns as traits. Each {i, j} cell value in the AWM corresponds to the z-score normalized additive effect of the ith gene (via its neighboring SNP) on the jth trait. Columnwise, the AWM recovered the genetic correlations estimated via pedigree-based restricted maximum-likelihood methods. Rowwise, a combination of hierarchical clustering, gene network, and pathway analyses identified genetic drivers that would have been missed by standard genome-wide association studies. Finally, the promoter regions of the AWM-predicted targets of three key transcription factors (TFs), estrogen-related receptor γ (ESRRG), Pal3 motif, bound by a PPAR-γ homodimer, IR3 sites (PPARG), and Prophet of Pit 1, PROP paired-like homeobox 1 (PROP1), were surveyed to identify binding sites corresponding to those TFs. Applied to our case, the AWM results recapitulate the known biology of puberty, captured experimentally validated binding sites, and identified candidate genes and gene–gene interactions for further investigation.


Journal of Animal Science | 2012

Genome-wide association studies of female reproduction in tropically adapted beef cattle

R. J. Hawken; Y. Zhang; M. R. S. Fortes; Eliza Collis; Wes Barris; N. J. Corbet; Paul Williams; Geoffry Fordyce; R. G. Holroyd; J. R. W. Walkley; W. Barendse; D. J. Johnston; Kishore Prayaga; Bruce Tier; Antonio Reverter; Sigrid A. Lehnert

The genetics of reproduction is poorly understood because the heritabilities of traits currently recorded are low. To elucidate the genetics underlying reproduction in beef cattle, we performed a genome-wide association study using the bovine SNP50 chip in 2 tropically adapted beef cattle breeds, Brahman and Tropical Composite. Here we present the results for 3 female reproduction traits: 1) age at puberty, defined as age in days at first observed corpus luteum (CL) after frequent ovarian ultrasound scans (AGECL); 2) the postpartum anestrous interval, measured as the number of days from calving to first ovulation postpartum (first rebreeding interval, PPAI); and 3) the occurrence of the first postpartum ovulation before weaning in the first rebreeding period (PW), defined from PPAI. In addition, correlated traits such as BW, height, serum IGF1 concentration, condition score, and fatness were also examined. In the Brahman and Tropical Composite cattle, 169 [false positive rate (FPR) = 0.262] and 84 (FPR = 0.581) SNP, respectively, were significant (P < 0.001) for AGECL. In Brahman, 41% of these significant markers mapped to a single chromosomal region on BTA14. In Tropical Composites, 16% of these significant markers were located on BTA5. For PPAI, 66 (FPR = 0.67) and 113 (FPR = 0.432) SNP were significant (P < 0.001) in Brahman and Tropical Composite, respectively, whereas for PW, 68 (FPR = 0.64) and 113 (FPR = 0.432) SNP were significant (P < 0.01). In Tropical Composites, the largest concentration of PPAI markers were located on BTA5 [19% (PPAI) and 23% (PW)], and BTA16 [17% (PPAI) and 18% (PW)]. In Brahman cattle, the largest concentration of markers for postpartum anestrus was located on BTA3 (14% for PPAI and PW) and BTA14 (17% PPAI). Very few of the significant markers for female reproduction traits for the Brahman and Tropical Composite breeds were located in the same chromosomal regions. However, fatness and BW traits as well as serum IGF1 concentration were found to be associated with similar genome regions within and between breeds. Clusters of SNP associated with multiple traits were located on BTA14 in Brahman and BTA5 in Tropical Composites.


Journal of Animal Science | 2011

A single nucleotide polymorphism-derived regulatory gene network underlying puberty in 2 tropical breeds of beef cattle

M. R. S. Fortes; Antonio Reverter; Shivashankar H. Nagaraj; Y. Zhang; N.N. Jonsson; Wes Barris; Sigrid A. Lehnert; G. Boe-Hansen; R. J. Hawken

Harsh tropical environments impose serious challenges on poorly adapted species. In beef cattle, tropical adaptation in the form of temperature and disease resistance, coupled with acclimatization to seasonal and limited forage, comes at a cost to production efficiency. Prominent among these costs is delayed onset of puberty, a challenging phenotype to manipulate through traditional breeding mechanisms. Recently, system biology approaches, including gene networks, have been applied to the genetic dissection of complex phenotypes. We aimed at developing and studying gene networks underlying cattle puberty. Our starting material comprises the association results of ~50,000 SNP on 22 traits, including age at puberty, and 2 cattle breed populations: Brahman (n = 843) and Tropical Composite (n = 866). We defined age at puberty as the age at first corpus luteum (AGECL). By capturing the genes harboring mutations minimally associated (P < 0.05) to AGECL or to a set of traits related with AGECL, we derived a gene network for each breed separately and a third network for the combined data set. At the intersection of the 3 networks, we identified candidate genes and pathways that were common to both breeds. Resulting from these analyses, we identified an enrichment of genes involved in axon guidance, cell adhesion, ErbB signaling, and glutamate activity, pathways that are known to affect pulsatile release of GnRH, which is necessary for the onset of puberty. Furthermore, we employed network connectivity and centrality parameters along with a regulatory impact factor metric to identify the key transcription factors (TF) responsible for the molecular regulation of puberty. As a novel finding, we report 5 TF (HIVEP3, TOX, EYA1, NCOA2, and ZFHX4) located in the network intersecting both breeds and interacting with other TF, forming a regulatory network that harmonizes with the recent literature of puberty. Finally, we support our network predictions with evidence derived from gene expression in hypothalamic tissue of adult cows.


Genetics | 2006

A primary assembly of a bovine haplotype block map based on a 15,036-single-nucleotide polymorphism panel genotyped in holstein-friesian cattle

Mehar S. Khatkar; Kyall R. Zenger; Matthew Hobbs; R. J. Hawken; Julie Cavanagh; Wes Barris; Alexander E. McClintock; S. McClintock; Peter C. Thomson; Bruce Tier; Frank W. Nicholas; Herman W. Raadsma

Analysis of data on 1000 Holstein–Friesian bulls genotyped for 15,036 single-nucleotide polymorphisms (SNPs) has enabled genomewide identification of haplotype blocks and tag SNPs. A final subset of 9195 SNPs in Hardy–Weinberg equilibrium and mapped on autosomes on the bovine sequence assembly (release Btau 3.1) was used in this study. The average intermarker spacing was 251.8 kb. The average minor allele frequency (MAF) was 0.29 (0.05–0.5). Following recent precedents in human HapMap studies, a haplotype block was defined where 95% of combinations of SNPs within a region are in very high linkage disequilibrium. A total of 727 haplotype blocks consisting of ≥3 SNPs were identified. The average block length was 69.7 ± 7.7 kb, which is ∼5–10 times larger than in humans. These blocks comprised a total of 2964 SNPs and covered 50,638 kb of the sequence map, which constitutes 2.18% of the length of all autosomes. A set of tag SNPs, which will be useful for further fine-mapping studies, has been identified. Overall, the results suggest that as many as 75,000–100,000 tag SNPs would be needed to track all important haplotype blocks in the bovine genome. This would require ∼250,000 SNPs in the discovery phase.


Mammalian Genome | 2004

An interactive bovine in silico SNP database (IBISS)

R. J. Hawken; Wesley C. Barris; Sean McWilliam; Brian P. Dalrymple

An interactive bovine in silico SNP (IBISS) database has been created through the clustering and aligning of bovine EST and mRNA sequences. Approximately 324,000 EST and mRNA sequences were clustered to produce 29,965 clusters (producing 48,679 consensus sequences) and 48,565 singletons. A SNP screening regime was placed on variations detected in the multiple sequence alignment files to determine which SNPs are more likely to be real rather than sequencing errors. A small subset of predicted SNPs was validated on a diverse set of bovine DNA samples using PCR amplification and sequencing. Fifty percent of the predicted SNPs in the “putative >1” category were polymorphic in the population sampled. The IBISS database represents more than just a SNP database; it is also a genomic database containing uniformly annotated predicted gene mRNA and protein sequences, gene structure, and genomic organization information.


Journal of Dairy Science | 2009

Bovine Muc1 is a highly polymorphic gene encoding an extensively glycosylated mucin that binds bacteria

Lillian Sando; Roger D. Pearson; Christian P. Gray; P. Parker; R. J. Hawken; Peter C. Thomson; J.R.S. Meadows; Kritaya Kongsuwan; Stuart C. Smith; Ross L. Tellam

The bovine Muc1 protein is synthesized by mammary epithelial cells and shed into milk as an integral component of the milk fat globule membrane; however, the structure and functions of this mucin, particularly in relation to lactation, are poorly defined. The objectives of this investigation were to investigate the Muc1 gene and protein structures in the context of lactation and to test the hypothesis that Muc1 has a role in innate immune defense. Polymerase chain reaction analysis of genomic DNA from 630 cattle revealed extensive polymorphism in the variable number of tandem repeats (VNTR) in the bovine Muc1 gene. Nine allelic variants spanning 7 to 23 VNTR units, each encoding 20 AA, were identified. Three alleles, containing 11, 14, and 16 VNTR units, respectively, were predominant. In addition, a polymorphism in one of the VNTR units has the potential to introduce a unique site for N-linked glycosylation. Statistical analysis indicated weak associations between the VNTR alleles and milk protein and fat percentages in a progeny-tested population of Holstein-Friesian dairy cattle. No association with somatic cell count could be demonstrated. Bovine Muc1 was purified from milk fat globule membranes and characterized. The protein was highly glycosylated, primarily with O-linked sialylated T-antigen [Neu5Ac(alpha2-3)-Gal(beta1-3)-GalNAcalpha1] and, to a lesser extent, with N-linked oligosaccharides, which together accounted for approximately 60% of the apparent mass of Muc1. Purified bovine Muc1 directly bound fluorescently labeled Escherichia coli BioParticles (Invitrogen, Mount Waverley, Australia) and inhibited their binding to bovine mammary epithelial cells grown in vitro. It was also demonstrated that the expression of Muc1 mRNA in bovine mammary epithelial cells was markedly upregulated by lipopolysaccharide. Muc1 may be a pattern recognition protein that has the capacity to sequester bacteria and prevent their attachment to epithelial surfaces by immobilizing and subsequently shedding Muc1-bound bacteria from the cell surface. It was concluded that bovine Muc1 is probably an inducible innate immune effector and an important component of the first line of defense against bacterial invasion of epithelial surfaces, particularly mammary epithelial surfaces and the neonatal gut.


Animal Production Science | 2012

Finding genes for economically important traits: Brahman cattle puberty

M. R. S. Fortes; Sigrid A. Lehnert; S. Bolormaa; C. Reich; Geoffry Fordyce; N. J. Corbet; V. Whan; R. J. Hawken; Antonio Reverter

Age at puberty is an important component of reproductive performance in beef cattle production systems. Brahman cattle are typically late-pubertal relative to Bos taurus cattle and so it is of economic relevance to select for early age at puberty. To assist selection and elucidate the genes underlying puberty, we performed a genome-wide association study (GWAS) using the BovineSNP50 chip (similar to 54 000 polymorphisms) in Brahman bulls (n = 1105) and heifers (n = 843) and where the heifers were previously analysed in a different study. In a new attempt to generate unbiased estimates of single-nucleotide polymorphism (SNP) effects and proportion of variance explained by each SNP, the available data were halved on the basis of year and month of birth into a calibration and validation set. The traits that defined age at puberty were, in heifers, the age at which the first corpus luteum was detected (AGECL, h(2) = 0.56 +/- 0.11) and in bulls, the age at a scrotal circumference of 26 cm (AGE26, h(2) = 0.78 +/- 0.10). At puberty, heifers were on average older (751 +/- 142 days) than bulls (555 +/- 101 days), but AGECL and AGE26 were genetically correlated (r = 0.20 +/- 0.10). There were 134 SNPs associated with AGECL and 146 SNPs associated with AGE26 (P < 0.0001). From these SNPs, 32 (similar to 22%) were associated (P < 0.0001) with both traits. These top 32 SNPs were all located on Chromosome BTA 14, between 21.95 Mb and 28.4 Mb. n nThese results suggest that the genes located in that region of BTA 14 play a role in pubertal development in Brahman cattle. There are many annotated genes underlying this region of BTA 14 and these are the subject of current research. Further, we identified a region on Chromosome X where markers were associated (P < 1.00E-8) with AGE26, but not with AGECL. Information about specific genes and markers add value to our understanding of puberty and potentially contribute to genomic selection. Therefore, identifying these genes contributing to genetic variation in AGECL and AGE26 can assist with the selection for early onset of puberty.


Genetics | 2006

A First-Generation Metric Linkage Disequilibrium Map of Bovine Chromosome 6

Mehar S. Khatkar; Andrew Collins; Julie Cavanagh; R. J. Hawken; Matthew Hobbs; Kyall R. Zenger; Wes Barris; Alexander E. McClintock; Peter C. Thomson; Frank W. Nicholas; Herman W. Raadsma

We constructed a metric linkage disequilibrium (LD) map of bovine chromosome 6 (BTA6) on the basis of data from 220 SNPs genotyped on 433 Australian dairy bulls. This metric LD map has distances in LD units (LDUs) that are analogous to centimorgans in linkage maps. The LD map of BTA6 has a total length of 8.9 LDUs. Within the LD map, regions of high LD (represented as blocks) and regions of low LD (steps) are observed, when plotted against the integrated map in kilobases. At the most stringent block definition, namely a set of loci with zero LDU increase over the span of these markers, BTA6 comprises 40 blocks, accounting for 41% of the chromosome. At a slightly lower stringency of block definition (a set of loci covering a maximum of 0.2 LDUs on the LD map), up to 81% of BTA6 is spanned by 46 blocks and with 13 steps that are likely to reflect recombination hot spots. The mean swept radius (the distance over which LD is likely to be useful for mapping) is 13.3 Mb, confirming extensive LD in Holstein–Friesian dairy cattle, which makes such populations ideal for whole-genome association studies.


G3: Genes, Genomes, Genetics | 2017

A New Chicken Genome Assembly Provides Insight into Avian Genome Structure

Wesley C. Warren; LaDeana W. Hillier; Chad Tomlinson; Patrick Minx; Milinn Kremitzki; Tina Graves; Chris Markovic; Nathan Bouk; Kim D. Pruitt; Françoise Thibaud-Nissen; Valerie Schneider; Tamer Mansour; C. Titus Brown; Aleksey V. Zimin; R. J. Hawken; Mitch Abrahamsen; Alexis B. Pyrkosz; Mireille Morisson; Valerie Fillon; Alain Vignal; William Chow; Kerstin Howe; Janet E. Fulton; Marcia M. Miller; Peter V. Lovell; Claudio V. Mello; Morgan Wirthlin; Andrew S. Mason; Richard Kuo; David W. Burt

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


Biology of Reproduction | 2012

Candidate Genes Associated with Testicular Development, Sperm Quality, and Hormone Levels of Inhibin, Luteinizing Hormone, and Insulin-Like Growth Factor 1 in Brahman Bulls

M. R. S. Fortes; Antonio Reverter; R. J. Hawken; Sunduimijid Bolormaa; Sigrid A. Lehnert

ABSTRACT Bull fertility is an important target for genetic improvement, and early prediction using genetic markers is therefore a goal for livestock breeding. We performed genome-wide association studies to identify genes associated with fertility traits measured in young bulls. Data from 1118 Brahman bulls were collected for six traits: blood hormone levels of inhibin (IN) at 4 mo, luteinizing hormone (LH) following a gonadotropin-releasing hormone challenge at 4 mo, and insulin-like growth factor 1 (IGF1) at 6 mo, scrotal circumference (SC) at 12 mo, ability to produce sperm (Sperm) at 18 mo, and percentage of normal sperm (PNS) at 24 mo. All the bulls were genotyped with the BovineSNP50 chip. Sires and dams of the bull population (n = 304) were genotyped with the high-density chip (∼800u200a000 polymorphisms) to allow for imputation, thereby contributing detail on genome regions of interest. Polymorphism associations were discovered for all traits, except for Sperm. Chromosome 2 harbored polymorphisms associated with IN. For LH, associated polymorphisms were located in five different chromosomes. A region of chromosome 14 contained polymorphisms associated with IGF1 and SC. Regions of the X chromosome showed associations with SC and PNS. Associated polymorphisms yielded candidate genes in chromosomes 2, 14, and X. These findings will contribute to the development of genetic markers to help select cattle with improved fertility and will lead to better annotation of gene function in the context of reproductive biology.

Collaboration


Dive into the R. J. Hawken's collaboration.

Top Co-Authors

Avatar

Antonio Reverter

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sigrid A. Lehnert

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Wes Barris

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge