R.J.T. Rodenburg
Radboud University Nijmegen Medical Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R.J.T. Rodenburg.
Neurology | 2006
E. Morava; L.P.W.J. van den Heuvel; Frans A. Hol; M. de Vries; Marije Hogeveen; R.J.T. Rodenburg; J.A.M. Smeitink
Background: Based on a previous prospective clinical and biochemical study, a consensus mitochondrial disease scoring system was established to facilitate the diagnosis in patients with a suspected mitochondrial disorder. Objective: To evaluate the specificity of the diagnostic system, we applied the mitochondrial disease score in 61 children with a multisystem disease and a suspected oxidative phosphorylation disorder who underwent a muscle biopsy and were consecutively diagnosed with a genetic mutation. Methods: We evaluated data of 44 children diagnosed with a disorder in oxidative phosphorylation, carrying a mutation in the mitochondrial or nuclear DNA. We compared them with 17 children who, based on the clinical and metabolic features, also had a muscle biopsy but were finally diagnosed with a nonmitochondrial multisystem disorder by further genetic analysis. Results: All children with a genetically established diagnosis of a primary oxidative phosphorylation disorder had a mitochondrial disease score above 6 (probable mitochondrial disorder), and 73% of the children had a score above 8 (definite mitochondrial disorder) at evaluation of the muscle biopsy. In the nonmitochondrial multisystem disorder group, the score was significantly lower, and no patients reached a score comparable with a definite respiratory chain disorder. Conclusions: The mitochondrial disease criteria system has a high specificity to distinguish between mitochondrial and other multisystem disorders. The method could also be applied in children with a suspected mitochondrial disorder, prior to performing a muscle biopsy.
Journal of Medical Genetics | 2007
A I Jonckheere; M Hogeveen; Leo Nijtmans; M.A.M. van den Brand; A.J.M. Janssen; J H S Diepstra; F.C.A. van den brandt; L.P.W.J. van den Heuvel; Frans A. Hol; T G J Hofste; L Kapusta; U Dillmann; M Shamdeen; Jan A.M. Smeitink; R.J.T. Rodenburg
Purpose: To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder. Methods: Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing. Transmitochondrial cybrids were obtained by fusion of 143B206 TK− rho zero cells with patient-derived enucleated fibroblasts. Immunoblotting techniques were applied to study the complex V assembly. Results: A homoplasmic nonsense mutation m.8529G→A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient’s fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient’s fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNA. Immunoblotting after blue native polyacrylamide gel electrophoresis showed a lack of holocomplex V and increased amounts of mitochondrial ATP synthase subcomplexes. An in-gel activity assay of ATP hydrolysis showed activity of free F1-ATPase in the patient’s muscle tissue and in the cybrid clones. Conclusion: We describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme.
Journal of Affective Disorders | 2009
Saskia Koene; Tamás Kozicz; R.J.T. Rodenburg; C.M. Verhaak; M. de Vries; Saskia B. Wortmann; L.P.W.J. van den Heuvel; J.A.M. Smeitink; E. Morava
A higher incidence of major depression has been described in adults with a primary oxidative phosphorylation disease. Intriguingly however, not all patients carrying the same mutation develop symptoms of major depression, pointing out the significance of the interplay of genetic and non-genetic factors in the etiology. In a series of paediatric patients evaluated for mitochondrial dysfunction, out of 35 children with a biochemically and genetically confirmed mitochondrial disorder, we identified five cases presenting with major depression prior to the diagnosis. The patients were diagnosed respectively with mutations in MTTK, MTND1, POLG1, PDHA1 and the common 4977 bp mtDNA deletion. Besides cerebral lactic acidemia protein and glucose concentrations, immunoglobins, anti-gangliosides and neurotransmitters were normal. No significant difference could be confirmed in the disease progression or the quality of life, compared to the other, genetically confirmed mitochondrial patients. In three out of our five patients a significant stress life event was confirmed. We propose the abnormal central nervous system energy metabolism as the underlying cause of the mood disorder in our paediatric patients. Exploring the genetic etiology in children with mitochondrial dysfunction and depression is essential both for safe medication and adequate counselling.
Journal of Medical Genetics | 2011
E. Ostergaard; R.J.T. Rodenburg; M.A.M. van den Brand; L.L. Thomsen; Morten Duno; M. Batbayli; Leo Nijtmans
Background This study investigated a girl with Leigh syndrome born to first-cousin parents of Pakistani descent with an isolated respiratory chain complex I deficiency in muscle and fibroblasts. Her early development was delayed, and from age 2 years she started losing motor abilities. Cerebral MRI showed basal ganglia lesions typical of Leigh syndrome. Methods and results A genome-wide search for homozygosity was performed with the Affymetrix GeneChip 50K Xba array. The analysis revealed several homozygous regions. Three candidate genes were identified, and in one of the genes, NDUFA12, a homozygous c.178C→T mutation leading to a premature stop codon (p.Arg60X) was found. Western blot analysis showed absence of NDUFA12 protein in patient fibroblasts and functional complementation by a baculovirus system showed restoration of complex I activity. Conclusion NDUFA12 mutations are apparently not a frequent cause of complex I deficiency, since mutations were not found by screening altogether 122 complex I deficient patients in two different studies. NDUFA12 encodes an accessory subunit of complex I and is a paralogue of NDUFAF2. Despite the complete absence of NDUFA12 protein, a fully assembled and enzymatically active complex I could be found, albeit in reduced amounts. This suggests that NDUFA12 is required either at a late step in the assembly of complex I, or in the stability of complex I.
Mitochondrion | 2010
Eva Morava; Thatjana Gardeitchik; Tamás Kozicz; L. de Boer; Saskia Koene; M. de Vries; Robert McFarland; T Roobol; R.J.T. Rodenburg; C.M. Verhaak
A higher incidence of depression has been described in adults with primary oxidative phosphorylation disease. We evaluated the psychological characteristics of eighteen non-retarded pediatric patients diagnosed with a disorder of the oxidative phosphorylation. We found significantly higher rate of withdrawn, depressive behaviour compared to population norm scores, to children with other types of inborn errors of metabolism and also in comparison to patients with Sotos syndrome. The occurrence of depressive behaviour showed no correlation with the degree of mitochondrial dysfunction. These findings support the hypothesis that mood disorders could be associated to abnormal cerebral energy metabolism.
Journal of Inherited Metabolic Disease | 2009
Dorothea Haas; P. Niklowitz; Friederike Hörster; E. R. Baumgartner; Chitra Prasad; R.J.T. Rodenburg; Georg F. Hoffmann; T. Menke; Jürgen G. Okun
SummaryThe content of coenzyme Q10 (CoQ10) was examined in skin fibroblasts of 10 patients with mevalonic aciduria (MVA) and of 22 patients with methylmalonic aciduria (MMA). Patients with these inborn errors of metabolism are thought to be at risk for CoQ10 depletion either by direct inhibition of the proximal pathway of CoQ10 synthesis (MVA) or indirectly by inhibition of mitochondrial energy metabolism (MMA). We demonstrated that CoQ10 concentrations were not significantly different from controls in MVA patients, suggesting that there may be upregulatory effects. On the other hand the CoQ10 content in fibroblasts of patients with MMA was significantly reduced.
Neuropediatrics | 2008
Dimitrios I. Zafeiriou; R.J.T. Rodenburg; H. Scheffer; L.P.W.J. van den Heuvel; Petra J. W. Pouwels; Athina Ververi; F. Athanasiadou-Piperopoulou; M.S. van der Knaap
We present clinical, magnetic resonance imaging and MR spectroscopic findings of a female patient, first admitted at the age of 9 months for regression of motor milestones and signs of mild spastic diplegia. Magnetic resonance imaging (MRI) demonstrated periventricular white matter abnormalities with sparing of the subcortical white matter. Subsequent MRIs, performed at the ages of 13 and 16 months, demonstrated progression of the white matter changes, progressive white matter rarefaction and cystic degeneration, and additional involvement of the corpus callosum; only the subcortical white matter remained spared. Proton MR spectroscopy revealed lactate elevation in the white matter. Blood lactate and lactate/pyruvate ratio were mildly elevated. Subsequent analysis of mitochondrial function in muscle tissue showed decreases in substrate oxidation and in ATP and CrP production rates. Complex I activity was seriously decreased, whereas mild decreases of complex II and IV activities were also noted. Analysis of the NDUFV1 gene revealed compound heterozygosity for two point mutations, each of them carried by one parent. The further clinical course of the patient was uphill; she slowly regained all previously lost motor milestones. In conclusion, diffuse white matter changes on MRI are compatible with mitochondrial encephalopathy and not necessarily associated with a severe clinical course.
Journal of Inherited Metabolic Disease | 2008
M. de Vries; R.J.T. Rodenburg; Eva Morava; Martin Lammens; L.P.W.J. van den Heuvel; G. Christoph Korenke; Jan A.M. Smeitink
SummaryWe report a 5-year-old child carrying polymerase gamma (POLG1) mutations, but strikingly normal oxidative phosphorylation analysis in muscle, fibroblasts and liver. Mutations in POLG1 have so far been described in children with severe combined oxidative phosphorylation (OXPHOS) deficiencies and with the classical Alpers–Huttenlocher syndrome. The patient presented with a delayed psychomotor development and ataxia during the first two years of life. From the third year of life he developed epilepsy and regression in development, together with symptoms of visual impairment and sensorineuronal deafness. Cerebrospinal fluid showed elevated lactic acid and protein concentrations. An elder brother had died due to combined OXPHOS deficiencies. Despite the clinical similarity with the elder brother, except for liver involvement, the OXPHOS system analysis in a frozen muscle biopsy was normal. For this reason a fresh muscle biopsy was performed, which has the advantage of the possibility of measuring the substrate oxidation rates and ATP production, part of the mitochondrial energy-generating system (MEGS). During the same session, biopsies of liver and fibroblasts were taken. These three tissues showed normal measurements of the MEGS capacity. Based on the phenotype of Alpers–Huttenlocher syndrome in the elder brother, we decided to screen the POLG1 gene. Mutation analysis showed compound heterozygosity with two known mutations, A467T and G848S. The normal MEGS capacity in this patient expands the already existing complexity and heterogeneity of the childhood POLG1 patients and, on the basis of the high frequency of POLG1 mutations in childhood, warrants a liberal strategy with respect to mutation analysis.
Journal of Inherited Metabolic Disease | 2010
Paulien Smits; R.J.T. Rodenburg; Jan A.M. Smeitink; L.P.W.J. van den Heuvel
SummaryThe oxidative phosphorylation (OXPHOS) system, comprising five enzyme complexes, is located in the inner membrane of mitochondria and is the final biochemical pathway in oxidative ATP production. Defects in this energy-generating system can cause a wide range of clinical symptoms; these diseases are often progressive and multisystemic. Numerous genes have been implicated in OXPHOS deficiencies and many mutations have been described. However, in a substantial number of patients with decreased enzyme activities of two or more OXPHOS complexes, no mutations in the mitochondrial DNA or in nuclear genes known to be involved in these disorders have been found. In this study, four nuclear candidate genes—NIPSNAP1, GBAS, CHCHD1 and METT11D1—were screened for mutations in 22 patients with a combined enzymatic deficiency of primarily the OXPHOS complexes I, III and IV to determine whether a mutation in one of these genes could explain the mitochondrial disorder. For each variant not yet reported as a polymorphism, 100 control samples were screened for the presence of the variant. This way we identified 14 new polymorphisms and 2 presumably non-pathogenic mutations. No mutations were found that could explain the mitochondrial disorder in the patients investigated in this study. Therefore, the genetic defect in these patients must be located in other nuclear genes involved in mtDNA maintenance, transcription or translation, in import, processing or degradation of nuclear encoded mitochondrial proteins, or in assembly of the OXPHOS system.
JIMD Reports | 2011
S. Balasubramaniam; Y. S. Choy; A. Talib; M. D. Norsiah; L.P.W.J. van den Heuvel; R.J.T. Rodenburg
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases caused by defects in the oxidative phosphorylation (OXPHOS) system. Given the complexity and intricacy of the OXPHOS system, it is not surprising that the underlying molecular defect remains unidentified in many patients with a mitochondrial disorder. Here, we report the clinical features and diagnostic workup leading to the elucidation of the genetic basis for a combined complex I and IV OXPHOS deficiency secondary to a mitochondrial translational defect in an infant who presented with rapidly progressive liver failure, encephalomyopathy, and severe refractory lactic acidemia. Sequencing of the GFM1 gene revealed two inherited novel, heterozygous mutations: a.539delG (p.Gly180AlafsX11) in exon 4 which resulted in a frameshift mutation, and a second c.688G > A (p.Gly230Ser) mutation in exon 5. This missense mutation is likely to be pathogenic since it affects an amino acid residue that is highly conserved across species and is absent from the dbSNP and 1,000 genomes databases. Review of literature and comparison were made with previously reported cases of this recently identified mitochondrial disorder encoded by a nuclear gene. Although limited in number, nuclear gene defects causing mitochondrial translation abnormalities represent a new, rapidly expanding field of mitochondrial medicine and should potentially be considered in the diagnostic investigation of infants with progressive hepatoencephalomyopathy and combined OXPHOS disorders.