R. James Ansley
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. James Ansley.
Ecological Applications | 2003
Roberta E. Martin; Gregory P. Asner; R. James Ansley; A. R. Mosier
Woody vegetation has encroached into areas once dominated by herbaceous land cover in arid and semiarid regions of the southwestern United States and around the world, resulting in documented changes to the biophysical and biogeochemical structure of these ecosystems during the past century. In North Texas rangelands, encroaching mes- quite (Prosopis glandulosavar. glandulosa), a known nitrogen (N)-fixing species, has caused changes in aboveground biomass, which, in turn, have influenced carbon (C) and N storage in surface soils. However, the effect on N oxide (nitric-NO and nitrous-N 2O oxide) emissions from the soils was unknown. We examined biotic (vegetation type and soil organic and inorganic N dynamics) and abiotic (soil moisture, temperature, and soil texture) controls over soil NO and N2O emissions across a gradient of aboveground Prosopisbiomass growing on two soil types. Soil N oxide fluxes were dominated by NO emissions produced during nitrification. Aboveground biomass was the best spatial predictor of NO emissions, with values increasing 20-fold (0.04-0.78 mg NO-N·m 22 ·d 21 ) across a 70-fold biomass gradient (5-350 g/m 2 ). Emissions also covaried with soil pH and clay content. Microsite position, under or between the mesquite canopies, did not influence NO emission rates. NO fluxes were four times higher from clay loam than from shallow clay soils; however, soil N properties (total organic N and extractable inorganic N) and cycling rates (mineralization and nitrification) did not differ significantly across the sites. Temporally, NO emissions and nitrification potential were positively correlated with temperature, with precipitation events elevating NO emissions fourfold over a 24-h period and producing small amounts of N2O. We conclude that mesquite encroachment in these grasslands increases NO emissions in a spatially explicit manner influenced by the aboveground biomass and soil type, which is then temporally mediated primarily by temperature and secondarily by precipitation.
Weed Technology | 2005
R. James Ansley; G. Allen Rasmussen
Junipers (Juniperus spp.) are native woody shrubs that have expanded beyond their normal historical ranges in the western and southwestern United States since the late 1800s. Most ecologists and resource managers agree that juniper has become a deleterious native invasive plant that threatens other vegetation ecosystems, such as grasslands, through a steady encroachment and ultimate domination. The use of fire in managing junipers is based on a management goal to increase the disturbance return interval and thereby reduce the abundance and/or competitive impact of juniper in an ecosystem. In this paper, we discuss rates of juniper encroachment in relation to presettlement fire regimes, juniper encroachment and soil health, postfire vegetation responses, and long-term potential of different juniper treatment scenarios that involve prescribed fire.
Gcb Bioenergy | 2010
R. James Ansley; Mustafa Mirik; Michael J. Castellano
Honey mesquite (Prosopis glandulosa Torr.) which grows on grasslands and rangelands in southwestern USA may have potential as a bioenergy feedstock because of existing standing biomass and regrowth potential. However, regrowth mesquite physiognomy is highly different from undisturbed mesquite physiognomy and little is known regarding growth rates and structural biomass allocation in regrowth mesquite. We compared canopy architecture, aboveground biomass and relative allocation of biomass components in regrowth (RG) trees of different known ages with undisturbed (UD) trees of similar canopy height to each RG age class. RG trees in most age classes (2–12 years old) had greater canopy area, leaf area, basal stem number, twig (<0.5 cm diameter) mass and small stem (0.5–3 cm diameter) mass than UD trees of the same height. Large stem (>3 cm diameter) mass was similar between RG and UD trees in all height classes. Ages of UD trees were determined after harvest and further comparisons were made between age, canopy structure and biomass in RG and UD trees. Relationships between age and total mass, age and height, and age and canopy area indicated a faster growth rate in RG than in UD trees. Large stem mass as a percentage of total tree mass accumulated more rapidly with age in RG than UD trees. Leaf area index and leaf : twig mass ratio were maintained near 1 in all RG and UD trees. Regrowth potential may be one of the most important features of mesquite in consideration as a bioenergy feedstock.
Remote Sensing | 2013
Mustafa Mirik; R. James Ansley; Karl Steddom; David C. Jones; C. M. Rush; Gerald J. Michels; Norman C. Elliott
Remote detection of non-native invasive plant species using geospatial imagery may significantly improve monitoring, planning and management practices by eliminating shortfalls, such as observer bias and accessibility involved in ground-based surveys. The use of remote sensing for accurate mapping invasion extent and pattern offers several advantages, including repeatability, large area coverage, complete instead of sub-sampled assessments and greater cost-effectiveness over ground-based methods. It is critical for locating, early mapping and controlling small infestations before they reach economically prohibitive or ecologically significant levels over larger land areas. This study was designed to explore the ability of hyperspectral imagery for mapping infestation of musk thistle (Carduus nutans) on a native grassland during the preflowering stage in mid-April and during the peak flowering stage in mid-June using the support vector machine classifier and to assess and compare the resulting mapping accuracy for these two distinctive phenological stages. Accuracy assessment revealed that the overall accuracies were 79% and 91% for the classified images at preflowering and peak flowering stages, respectively. These results indicate that repeated detection of the infestation extent, as well as infestation severity or intensity, of this noxious weed in a spatial and temporal context is possible using hyperspectral remote sensing imagery.
Rangeland Ecology & Management | 2006
R. James Ansley; Michael J. Castellano; William E. Pinchak
Abstract There is increased interest in the use of summer-season fires to limit woody plant encroachment on southern prairie grasslands, but collateral effects of these fires on grasses are poorly understood. We quantified effects of repeated winter fires, repeated summer fires, simulated grazing (clipping), and their interaction on yields of the C4 midgrass, sideoats grama (Bouteloua curtipendula) in northern Texas. Monoculture patches of sideoats grama were exposed to 1 of 3 fire treatments: 1) no burn, 2) 2 winter fires in 3 years, or 3) 2 summer fires in 3 years; and to 1 of 2 clip treatments (no clip or clip once each spring). Total yield (live + standing dead), live yield, percent live tissue, and foliar cover were measured in spring and late-growing season (late-season) over a 7-year period. In unclipped plots, late-season total yield did not fully recover until 2 growing seasons after winter fires and 3 growing seasons after summer fires. By 5 years postfire, total yield was greater in both fire treatments than in the no burn. Live yields recovered more quickly than total yields following summer fires but never exceeded the no burn. Percent live tissue was greater in both fire treatments than in the no burn for up to 2 years postfire. Clipping reduced total and live yields in the no burn and winter-fire treatments but not in the summer-fire treatment. By 5 years postfire, total and live yields were greater in the summer fire + clip than the no burn + clip or winter fire + clip treatments. Results suggest that 1) sideoats grama is tolerant of summer fires but full recovery may require at least 3 years, and 2) in the long-term, summer fire + clipping may stimulate sideoats grama production more than winter fire + clipping or clipping alone.
Rangeland Ecology & Management | 2012
Mustafa Mirik; R. James Ansley
Abstract Remote sensing has long been recognized as a rapid, inexpensive, nondestructive, and synoptic technique to study rangeland vegetation and soils. With respect to the worldwide phenomenon of woody plant invasion on many grasslands and rangelands, there is increasing interest in accurate and cost-effective quantification of woody plant cover and distribution over large land areas. Our objectives were to 1) investigate the relationship between ground-measured and image-classified honey mesquite (Prosopis glandulosa Torr.) canopy cover at three sites in north Texas using high spatial resolution (0.67-m) aerial images, and 2) examine the suitability of aerial images with different spatial resolutions (0.67-m, 1-m, and 2-m) for accurate estimation of mesquite canopy cover. The line intercept method and supervised maximum likelihood classifier were used to measure mesquite cover on the ground and on images, respectively. Images all were taken in September when mesquite foliage was photosynthetically active and most herbaceous vegetation was dormant. The results indicated that there were robust agreements between classified and ground-measured mesquite cover at all three sites with the coefficients of determination (r2) ≥ 0.95. Accuracy of lower spatial resolution images ranged from r2 = 0.89–0.93, with the 2-m spatial resolution image on one of the sites at r2 = 0.89. For all sites, the overall, producers, and users accuracies, and kappa statistics were 92% and 97%, 91% and 99%, 85% and 96%, and 0.82 and 0.95 for 2-m and 0.67-m spatial resolution images, respectively. Results showed that images at all three spatial resolution levels were effective for estimating mesquite cover over large and remote or inaccessible areas.
Rangeland Ecology & Management | 2007
R. James Ansley; Michael J. Castellano
Abstract Prescribed fire is used to reduce size and density of prickly pear cactus (Opuntia spp.) in many rangeland ecosystems. However, effects of dormant season fires (i.e., winter fires) are inconsistent. Thus, there is increasing interest in use of growing season (summer) fires. Our objective was to evaluate effects of fire season and fire intensity on mortality and individual plant (i.e., “motte”) structure (area per motte, cladodes per motte, motte height) of brownspine prickly pear (O. phaeacantha Engelm.). The study had 4 treatments: no fire, low-intensity winter fire, high-intensity winter fire, and summer fire. Three sizes of prickly pear mottes were evaluated: small (0–20 cladodes per motte), medium (21–100), and large (101–500). At 3 years postfire, prickly pear mortality in the summer fire treatment was 100% in small mottes, 90% in medium mottes, and 80% in large mottes. Motte mortality increased in this treatment over time, especially in large mottes. Mortality from high-intensity winter fires was 29% and 19% in small and medium mottes, respectively, but no large mottes were killed. Motte mortality was < 10% in low-intensity winter fire and no-fire treatments. Summer fires reduced all motte structural variables to 0 in small mottes and nearly 0 in other motte size classes. High-intensity winter fires reduced some structural variables of medium and large mottes, but had no long-term negative effects on area per motte or cladodes per motte in surviving small mottes. Low-intensity winter fires had no long-term negative effects on motte structure in any size class. Rapid growth of mottes, and especially small mottes, in the no-fire treatment suggested that resistance to winter fires can occur rapidly.
Rangeland Ecology & Management | 2007
R. James Ansley; Michael J. Castellano
Abstract There is increased interest in the use of summer-season fires to limit woody plant encroachment into grasslands, but effects of these fires on grasses are poorly understood. We quantified effects of repeated winter fires, repeated summer fires, and clipping (to simulate grazing) on aboveground total yield, live yield, and percentage of live tissue of C3 Texas wintergrass (Nassella leucotricha [Trin. & Rupr.] Pohl.), and C4 buffalograss (Buchloë dactyloides [Nutt.] Engelm.) in 2 experiments. Monospecific patches of each species were exposed to 1 of 3 fire treatments (no-fire, 2 winter fires in 3 years, or 2 summer fires in 3 years) and 1 of 2 clip treatments (no clip or clip once each spring). Experiment 1 evaluated effects of fire without grazing or clipping on late-growing season (late-season) yields. Late-season total yield of both species recovered from winter and summer fires within 1 or 2 growing seasons post-fire. By 3 years post-fire, Texas wintergrass late-season total yield was 2 times greater in the summer fire treatment than the winter fire or no-fire treatments, and buffalograss late-season total yield was 3 times greater in summer and winter fire treatments than in the no-fire treatment. Experiment 2 evaluated combined effects of fire and clipping the previous spring on spring-season yields. Clipping alone or with fire (summer or winter) reduced Texas wintergrass yields on more sample dates than occurred with buffalograss. By 3 years post-fire, buffalograss spring total yield was greater in all fire and fire + clip treatments than in the clip only or untreated controls. Results suggest: 1) both species were tolerant of summer fire, 2) fire in either season with or without clipping stimulated buffalograss production, and 3) buffalograss was more tolerant than Texas wintergrass to the combined effects of clipping + fire (either season).
Remote Sensing | 2012
Mustafa Mirik; R. James Ansley
Woody plant encroachment into grasslands and rangelands is a world-wide phenomenon but detailed descriptions of changes in geographical distribution and infilling rates have not been well documented at large land scales. Remote sensing with either aerial or satellite images may provide a rapid means for accomplishing this task. Our objective was to compare the accuracy and utility of two types of images with contrasting spatial resolutions (1-m aerial and 30-m satellite) for classifying woody and herbaceous canopy cover and determining woody infilling rates in a large area of rangeland (800 km2) in north Texas that has been invaded by honey mesquite (Prosopis glandulosa). Accuracy assessment revealed that the overall accuracies for the classification of four land cover types (mesquite, grass, bare ground and other) were 94 and 87% with kappa coefficients of 0.89 and 0.77 for the 1-m and 30-m images, respectively. Over the entire area, the 30-m image over-estimated mesquite canopy cover by 9 percentage units (10 vs. 19%) and underestimated grass canopy cover by the same amount when compared to the 1-m image. The 30-m resolution image typically overestimated mesquite canopy cover within 225 4-ha sub-cells that contained a range of mesquite covers (1–70%) when compared to the 1-m image classification and was not suitable for quantifying infilling rates of this native invasive species. Documenting woody and non-woody canopy cover on large land areas is important for developing integrated, regional-scale management strategies for rangeland and grassland regions that have been invaded by woody plants.
Journal of Applied Remote Sensing | 2014
Mustafa Mirik; R. James Ansley; Karl Steddom; C. M. Rush; G. J. Michels; Fedkede Workneh; Song Cui; Norman C. Elliott
Abstract. The effects of insect infestation in agricultural crops are of major ecological and economic interest because of reduced yield, increased cost of pest control and increased risk of environmental contamination from insecticide application. The Russian wheat aphid (RWA, Diuraphis noxia) is an insect pest that causes damage to wheat (Triticum aestivum L.). We proposed that concentrated RWA feeding areas, referred to as “hot spots,” could be identified and isolated from uninfested areas within a field for site specific aphid management using remotely sensed data. Our objectives were to (1) investigate the reflectance characteristics of infested and uninfested wheat by RWA and (2) evaluate utility of airborne hyperspectral imagery with 1-m spatial resolution for detecting, quantifying, and mapping RWA infested areas in commercial winter wheat fields using the constrained energy minimization classifier. Percent surface reflectance from uninfested wheat was lower in the visible and higher in the near infrared portions of the spectrum when compared with RWA-infested wheat. The overall classification accuracies of > 89 % for damage detection were achieved. These results indicate that hyperspectral imagery can be effectively used for accurate detection and quantification of RWA infestation in wheat for site-specific aphid management.