R. K. Chhajlani
Vikram University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. K. Chhajlani.
Physics of Plasmas | 2008
R. P. Prajapati; G. D. Soni; R. K. Chhajlani
The effects of uniform rotation, finite electrical resistivity, electron inertia, and Hall current on the self-gravitational instability of anisotropic pressure plasma with generalized polytrope laws have been studied. A general dispersion relation is obtained with the help of the relevant linearized perturbed magnetohydrodynamic (MHD) equations incorporating the relevant contributions of various effects of the problem using the method of normal mode analysis. The general dispersion relation is further reduced for the special cases of rotation; i.e., parallel and perpendicular to the direction of the magnetic field. The longitudinal and transverse modes of propagation are discussed separately for investigation of condition of instability. The effects of rotation, Hall current, finite electron inertia, and polytropic indices are discussed on the gravitational, “firehose,” and “mirror” instabilities. The numerical calculations have been performed to obtain the dependence of the growth rate of the gravitatio...
Astrophysics and Space Science | 1987
R. K. Chhajlani; D. S. Vaghela
The problem of incipient fragmentation of interstellar matter to form condensation is investigated taking into account the porosity, viscosity, thermal conductivity, and effect of finite ion-Larmor radius (FLR) on the self-gravitating plasma having a uniform magnetic field acting in vertical direction. Relevant linearized equations are stated and dispersion relation is obtained. Wave propagation in longitudinal and transverse direction to the magnetic field is considered. Stability and instability of the medium is discussed. It is found that if the Jeanss instability condition is not fulfilled the medium must remain stable. Magnetic field, FLR and porosity do not affect the Jeanss criterion of instability in longitudinal direction but in transverse direction, the magnetic field and FLR have stabilizing effect which is reduced due to porosity of the medium. Thermal conductivity destabilizes the medium in both the directions. In transverse direction contribution of FLR on the Jeanss expression for instability is not observed in thermally conducting medium.
Physics of Plasmas | 2014
Prerana Sharma; R. K. Chhajlani
The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In the case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to b...
Astrophysics and Space Science | 1988
M. K. Vyas; R. K. Chhajlani
Magnetogravitational instability of a thermally-conducting, rotating plasma flowing through a porous medium with finite conductivity and finite Larmor radius in the presence of suspended particles has been investigated. The wave propagation has been considered for both parallel and perpendicular axes of rotation. Magnetic field is being taken in the vertical direction. A general dispersion relation has been derived through relevant linearized perturbation equations. It has been observed that the condition of instability is determined by the Jeanss criterion in its modifed form. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one. Rotation decreases the Larmor radius. Porosity decreases the Alfvén velocity. In case of a viscous medium the effects of FLR, rotation, and suspended particles are not observed in the Jeanss condition, for transverse propagation for rotational axis parallel to the magnetic field. The effects of rotation and FLR are decreased by the porosity and the suspended particles. Finite conductivity removes the Alfvén velocity from Jeanss condition.
Astrophysics and Space Science | 1988
M. K. Vyas; R. K. Chhajlani
The gravitational instability of an infinite homogenous rotating plasma through a porous medium in the presence of a uniform magnetic field with finite electrical and thermal conductivities has been studied. With the help of relevant linearized perturbation equations of the problem, a general dispersion relation is obtained, which is further reduced for the special cases of rotation, parallel and perpendicular to the megnetic field acting in the vertical direction. Longitudinal and transverse modes of propagation are discussed separately. It is found that the joint effect of various parameters is simply to modify the Jeanss condition of instability. The effect of finite electrical conductivity is to remove the effect of magnetic field where as the effect of thermal conductivity is to replace the adiabatic velocity of sound by the isothermal one. Rotation has its effect only along the magnetic field in the transverse mode of propagation for an inviscid plasma, thereby stabilizing the system. Porosity reduces the effect of both, the magnetic field and the rotation, in the transverse mode of propagation in both the cases of rotation. The effect of viscosity is to remove the rotational effects parallel to the magnetic field in the transverse mode of propagation.
Astrophysics and Space Science | 1988
D. S. Vaghela; R. K. Chhajlani
The Rayleigh-Taylor instability of the plane interface separating the two partially-ionized superposed fluids through porous medium is analysed. The effect of variable horizontal magnetic field, surface tension and rotation along the vertical axis are also incorporated. The relevant linearized perturbation equations are taken and using normal mode analysis the general relation is obtained from which the dispersion relation for two superposed fluids of different densities is derived. It is found that the surface tension and horizontal magnetic field have the stabilizing effect on the R-T-instability. The condition of instability remains unaffected by the permeability of porous medium, presence of neutral particles in the fluids and rotation.It is concluded that the system is unstable only for those positive wave numbers which are less than certain critical value in case of an adverse density gradient.
Astrophysics and Space Science | 1985
R. K. Chhajlani; R. K. Sanghvi
The magneto-gravitational instability of an infinite, homogenous, and infinitely conducting plasma flowing through a porous medium is studied. The finite ion Larmor radius (FLR) effects and viscosity are also incorporated in the analysis. The prevalent magnetic field is assumed to be uniform and acting in the vertical direction. A general dispersion relation has been obtained from the relevant linearized perturbation equations of the problem. The wave propagation parallel and perpendicular to the direction of the magnetic field have been discussed. It is found that the condition of the instability is determined by the Jeans criterion for a self-gravitating, infinitely conducting, magnetized fluid through a porous medium. Furthermore, for transverse perturbation FLR is found to have stabilizing influence when the medium is considered inviscid.
Physics of Plasmas | 2014
Prerana Sharma; R. K. Chhajlani
The Jeans self-gravitational instability is studied for quantum plasma composed of weakly coupled degenerate electron fluid and non-degenerate strongly coupled ion fluid. The formulation for such system is done on the basis of two fluid theory. The dynamics of weakly coupled degenerate electron fluid is governed by inertialess momentum equation. The quantum forces associated with the quantum diffraction effects and the quantum statistical effects act on the degenerate electron fluid. The strong correlation effects of ion are embedded in generalized viscoelastic momentum equation including the viscoelasticity and shear viscosities of ion fluid. The general dispersion relation is obtained using the normal mode analysis technique for the two regimes of propagation, i.e., hydrodynamic and kinetic regimes. The Jeans condition of self-gravitational instability is also obtained for both regimes, in the hydrodynamic regime it is observed to be affected by the ion plasma oscillations and quantum parameter while in the kinetic regime in addition to ion plasma oscillations and quantum parameter, it is also affected by the ion velocity which is modified by the viscosity generated compressional effects. The Jeans critical wave number and corresponding critical mass are also obtained for strongly coupled quantum plasma for both regimes.
Astrophysics and Space Science | 1988
R. K. Chhajlani; M. K. Vyas
The self-gravitational instability of an ionized, thermally-conducting, magnetized, rotating plasma flow through a porous medium has been studied in the presence of suspended particles. The ionized gas-particle medium has been considered rotating along and perpendicular to the vertical magnetic field. Propagation of the plasma waves has been studied for the longitudinal and the transverse modes for both the cases of rotation. A general dispersion relation has been derived with the help of relevant perturbation equations, using the method of normal mode analysis. The Jeans criterion determines the condition of gravitational instability in all the cases with some modifications introduced by the various parameters considered. Thermal conductivity replaces the adiabatic sonic speed by the isothermal one. Considering the longitudinal mode of propagation with perpendicular rotational axis, for an inviscid plasma with adiabatic behaviour the effect of both, the rotation and the suspended particles has been removed by the magnetic field. For the transverse mode of propagation with the axis of rotation parallel to the magnetic field, the viscosity removes the effect of both, the rotation and the suspended particles. Porosity reduces the effect of both, the rotation and the magnetic field, whereas the concentration of the suspended particles reduces the rotational effect.
Journal of Physics: Conference Series | 2012
R. P. Prajapati; P K Sharma; R K Sanghvi; R. K. Chhajlani
We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.