R.K. Singh Raman
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R.K. Singh Raman.
Biomaterials | 2008
M. Bobby Kannan; R.K. Singh Raman
The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.
Journal of Materials Science | 2003
D. Ratna; Russell J. Varley; R.K. Singh Raman; George P. Simon
An epoxy-functionalized hyperbranched polymer (HBP) was used to toughen a conventional epoxy resin, diglycidyl ether of bisphenol A (DGEBA) cured with diethyltoluene-2,6-diamine (DETDA). There was little change in gel time as a result of addition of HBP, even though the HBP reacts at a slower rate with amine hardeners compared to DGEBA alone. Phase separation was investigated for various HBP contents and as a function of cure conditions as well. The thermal and dynamic viscoelastic behavior of the modified matrices have been examined and compared to the DGEBA epoxy matrix. It appears that the HBP which phase separates does not react as fully as when it is reacted with the amine alone. Nonetheless, good improvement in impact strength as a result of incorporation of HBP were observed and explained in terms of morphological behavior for a DGEBA matrix modified with various amounts of HBP.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2004
R.K. Singh Raman
The article presents new findings on the influence of microstructural changes on corrosion behavior of magnesium alloy AZ91 in chloride solution, with a particular attention to the role of the β phase (Mg17Al12) and the surrounding Al-rich-α area. The as-cast alloy was subjected to solutionizing and aging heat treatments, in order to incorporate variation in morphology and distribution of the intermetallic β phase and the surrounding Al-rich-α (also known as eutectic α). Although previous workers have ascribed the higher corrosion resistance of a fine-grained alloy to the formation of the finely distributed β phase, the present work suggests that it is the ratio of the β phase to the Al-rich-α that governs the localized corrosion of the aged alloy. Corrosion characteristics were investigated by immersion and electrochemical tests. Surface microtopography, optical microscopy, and scanning electron microscopy (SEM) were employed to characterize the localized corrosion.
Acta Biomaterialia | 2012
Lokesh Choudhary; R.K. Singh Raman
It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment.
Materials Science and Engineering: C | 2014
Lokesh Choudhary; R.K. Singh Raman; Joëlle Hofstetter; Peter J. Uggowitzer
The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics.
Materials Science and Engineering: C | 2014
Swati Gaur; R.K. Singh Raman; A.S. Khanna
A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface-known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216h. Magnesium phosphate is reported to support osteoblast formation and tissue healing.
Journal of Biomedical Materials Research Part B | 2011
M. Bobby Kannan; R.K. Singh Raman; F. Witte; Carsten Blawert; W. Dietzel
Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2005
R.K. Singh Raman
This article investigates applicability of slow strain rate testing (SSRT), which is a common testing technique for determining susceptibility to caustic cracking/stress corrosion cracking (SCC). The results suggest the need for investigating a wide range of strain rates, while investigating the role of other test/process variables. The findings of this investigation provide recommendations of thorough testing with carefully selected test parameters, in order for SSRT to provide caustic cracking susceptibility data that can be confidently used by the alumina processing industry.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2014
B. V. Mahesh; R.K. Singh Raman
The extremely fine grain size of nanocrystalline (nc) metallic alloys results in significantly different mechanical, electrochemical and oxidation properties as compared to the coarse-grained alloys of the same composition. Although the synthesis and attractive mechanical properties of nanocrystalline materials have been investigated and reviewed in great depth, the high temperature oxidation and electrochemical corrosion of these materials has received limited attention. The difference in the active dissolution and passivation behavior of nc alloys as compared to their microcrystalline counterparts varies for each alloy system. However, a unified theory explaining these phenomena still eludes us. In this context, this article reviews the progress in the electrochemical corrosion behavior of different nanocrystalline alloys, and hence, develops a better understanding of the effect of grain size, composition, interfacial phenomena and selective dissolution on corrosion of nanocrystalline alloys. This review also presents the role of nanometric grain size and the associated increase in grain boundary diffusion on the high temperature oxidation of nc alloys. The attractive possibility of enhanced oxidation resistance at lower alloying additions as compared to the coarse-grained alloys has been discussed. Although the primary focus of the article is on ferrous alloy systems, however, the lead studies on the role of ultrafine grain size in oxidation/corrosion behavior of other alloys systems have also been reviewed.
Philosophical Magazine | 2010
R.K. Singh Raman; R.K. Gupta; Carl C. Koch
This paper presents a hypothesis and its experimental validation that a nanostructure can bring about dramatic improvements in the oxidation/corrosion resistance of iron–chromium alloys. More specifically, a nanocrystalline Fe–10 wt% Cr alloy was found to undergo oxidation at a rate that was an order of magnitude lower than its microcrystalline counterpart. Importantly, the oxidation resistance of nanocrystalline Fe–10 wt% Cr alloy was comparable with that of the common corrosion-resistant microcrystalline stainless steels (having 18–20 wt% chromium). The findings have the potential of leading to the next generation of oxidation-resistant alloys. However, due to poor thermal stability of nanocrystalline structure, synthesis/processing of such alloys is a challenge. Discs of nanocrystalline Fe–10% Cr alloy were produced by ball-milling of Fe and Cr powders and compaction of the powder without considerable grain growth by processing within a suitable time–temperature window. The paper also presents a theoretical treatise to arrive at the minimum chromium content required for establishing a protective layer of chromium oxide in an Fe–Cr alloy of a given nanometric grain size.