R. Klingeler
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Klingeler.
Physical Review Letters | 2008
H.-H. Klauss; H. Luetkens; R. Klingeler; C. Hess; F. J. Litterst; M. Kraken; M. M. Korshunov; Ilya Eremin; S.-L. Drechsler; R. Khasanov; A. Amato; J. Hamann-Borrero; N. Leps; A. Kondrat; G. Behr; J. Werner; B. Büchner
We present a detailed study on the magnetic order in the undoped mother compound LaFeAsO of the recently discovered Fe-based superconductor LaFeAsO1-xFx. In particular, we present local probe measurements of the magnetic properties of LaFeAsO by means of 57Fe Mössbauer spectroscopy and muon-spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5)muB at the iron site below T(N)=138 K, well separated from a structural phase transition at T(S)=156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T(N) are reproduced.
International Journal of Hyperthermia | 2008
R. Klingeler; Silke Hampel; Bernd Büchner
Due to their extraordinary physical and chemical properties carbon nanotubes reveal promising potential as biomedical agents for heating, temperature sensoring and drug delivery on the cellular level. Filling carbon nanotubes with tailored materials realises nanoscaled containers in which the active content is encapsulated by a protecting carbon shell. We describe different synthesis routes and show the structural and magnetic properties of carbon nanotubes. In particular, the filling with magnetic materials offers the potential for hyperthermia applications while the insertion of NMR active substances allows the usage as markers and sensors. The potential of carbon nanotubes for biomedical applications is highlighted by hyperthermia studies which prove their applicability for local in situ heating. In addition we have shown that a non-invasive temperature control by virtue of a carbon-wrapped nanoscaled thermometer and filling with anti-cancer drugs is possible.
Physical Review Letters | 2008
Hans-Joachim Grafe; Dalibor Paar; G. Lang; N. J. Curro; G. Behr; J. Werner; J. Hamann-Borrero; C. Hess; N. Leps; R. Klingeler; B. Büchner
We have performed 75As nuclear magnetic resonance measurements on aligned powders of the new LaFeAsO0.9F0.1 superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice relaxation rate. In the superconducting state, we find evidence for line nodes in the superconducting gap and spin-singlet pairing. Our measurements reveal a strong anisotropy of the spin lattice relaxation rate, which suggests that superconducting vortices contribute to the relaxation rate when the field is parallel to the c axis but not for the perpendicular direction.
ACS Nano | 2009
Alicja Bachmatiuk; Felix Börrnert; Mandy Grobosch; Franziska Schäffel; Ulrike Wolff; Andrew M. Scott; Mujtaba Zaka; Jamie H. Warner; R. Klingeler; M. Knupfer; Bernd Büchner; Mark H. Rümmeli
The use of SiO(2) as a catalyst for graphitic nanostructures, such as carbon nanotubes and graphene, is a new and rapidly developing catalyst system. A key question is whether carbide phases form in the reaction. We show the formation of SiC from SiO(2) nanoparticles for the synthesis of graphitic carbon nanostructures via chemical vapor deposition (CVD) at 900 degrees C. Our findings point to the carbothermal reduction of SiO(2) in the CVD reaction. The inclusion of triethyl borate apparently accelerates the process and leads to improved yields. The study helps better understand the growth mechanisms at play in carbon nanotube and carbon nanofiber formation when using SiO(2) catalysts.
Physical Review Letters | 2008
H. Luetkens; H.-H. Klauss; R. Khasanov; A. Amato; R. Klingeler; I. Hellmann; N. Leps; A. Kondrat; C. Hess; Anke Köhler; G. Behr; J. Werner; B. Büchner
We present zero field and transverse field muon spin relaxation experiments on the recently discovered Fe-based superconductor LaFeAsO1-xFx (x=0.075 and x=0.1). The temperature dependence of the deduced superfluid density is consistent with a BCS s-wave or a dirty d-wave gap function, while the field dependence strongly evidences unconventional superconductivity. We obtain the in-plane penetration depth of lambda ab(0)=254(2) nm for x=0.1 and lambda ab(0)=364(8) nm for x=0.075. Further evidence for unconventional superconductivity is provided by the ratio of Tc versus the superfluid density, which is close to the Uemura line of high-Tc cuprates.
EPL | 2009
C. Hess; A. Kondrat; Alessandro Narduzzo; J. Hamann-Borrero; R. Klingeler; J. Werner; G. Behr; Bernd Büchner
We present the first comprehensive derivation of the intrinsic electronic phase diagram of the iron-oxypnictide superconductors in the normal state based on the analysis of the electrical resistivity ρ of both LaFeAsO1- xFx and SmF eAsO1- xFx for a wide range of doping. Our data give clear-cut evidence for unusual normal-state properties in these new materials. In particular, the emergence of superconductivity at low doping levels is accompanied by distinct anomalous transport behavior in ρ of the normal state which is reminiscent of the spin-density wave (SDW) signature in the parent material. At higher doping levels ρ of LaFeAsO1- xFx shows a clear transition from this pseudogap-like behavior to Fermi-liquid–like behavior, mimicking the phase diagram of the cuprates. Moreover, our data reveal a correlation between the strength of the anomalous features and the stability of the superconducting phase. The pseudogap-like features become stronger in SmF eAsO1- xFx where superconductivity is enhanced and vanish when superconductivity is reduced in the doping region with Fermi-liquid–like behavior.
Journal of the American Chemical Society | 2011
Animesh Das; Klaus Gieb; Yulia Krupskaya; Serhiy Demeshko; Sebastian Dechert; R. Klingeler; V. Kataev; Bernd Büchner; Paul Müller; Franc Meyer
First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.
Nanotechnology | 2010
M. Arlt; Diana Haase; Silke Hampel; Steffen Oswald; Alicja Bachmatiuk; R. Klingeler; R Schulze; Manfred Ritschel; Albrecht Leonhardt; Susanne Fuessel; Bernd Büchner; Kai Kraemer; Manfred P. Wirth
Since the activity of several conventional anticancer drugs is restricted by resistance mechanisms and dose-limiting side-effects, the design of nanocarriers seems to be an efficient and promising approach for drug delivery. Their chemical and mechanical stability and their possible multifunctionality render tubular nanomaterials, such as carbon nanotubes (CNTs) and carbon nanofibres (CNFs), promising delivery agents for anticancer drugs. The goal of the present study was to investigate CNTs and CNFs in order to deliver carboplatin in vitro. No significant intrinsic toxicity of unloaded materials was found, confirming their biocompatibility. Carboplatin was loaded onto CNTs and CNFs, revealing a loading yield of 0.20 mg (CNT-CP) and 0.13 mg (CNF-CP) platinum per milligram of material. The platinum release depended on the carrier material. Whereas CNF-CP marginally released the drug, CNT-CP functioned as a drug depot, constantly releasing up to 68% within 14 days. The cytotoxicity of CNT-CP and CNF-CP in urological tumour cell lines was dependent on the drug release. CNT-CP was identified to be more effective than CNF-CP concerning the impairment of proliferation and clonogenic survival of tumour cells. Moreover, carboplatin, which was delivered by CNT-CP, exhibited a higher anticancer activity than free carboplatin.
Physical Review Letters | 2008
G. Fuchs; S L Drechsler; N. Kozlova; G. Behr; A Köhler; J. Werner; K Nenkov; R. Klingeler; J. Hamann-Borrero; C. Hess; A. Kondrat; M Grobosch; Alessandro Narduzzo; M Knupfer; J Freudenberger; Bernd Büchner; L Schultz
We report upper critical field Bc2(T) data for disordered (arsenic-deficient) LaO0.9F0.1FeAs1-delta in a wide temperature and magnetic field range up to 47 T. Because of the large linear slope of Bc2 approximately -5.4 to -6.6 T/K near Tc approximately 28.5 K, the T dependence of the in-plane Bc2(T) shows a flattening near 23 K above 30 T which points to Pauli-limited behavior with Bc2(0) approximately 63-68 T. Our results are discussed in terms of disorder effects within [corrected] unconventional superconducting pairings.
Physical Review B | 2008
J. M. Tranquada; G. D. Gu; M. Hücker; Qing Jie; Hye Jung Kang; R. Klingeler; Q. Li; N. Tristan; Jinsheng Wen; Guangyong Xu; Z. J. Xu; Juan Zhou; M. V. Zimmermann
We present new x-ray and neutron-scattering measurements of stripe order in