Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. L. Herman is active.

Publication


Featured researches published by R. L. Herman.


Journal of Geophysical Research | 2002

Chemical depletion of Arctic ozone in winter 1999/2000

M. Rex; R. J. Salawitch; N. R. P. Harris; P. von der Gathen; G. O. Braathen; Astrid Schulz; H. Deckelmann; M. P. Chipperfield; Björn-Martin Sinnhuber; E. Reimer; R. Alfier; Richard M. Bevilacqua; K. W. Hoppel; M. Fromm; J. Lumpe; H. Küllmann; Armin Kleinböhl; H. Bremer; M. von König; K. Künzi; D. W. Toohey; H. Vömel; Erik Charles Richard; K. C. Aikin; H. Jost; Jeffery B. Greenblatt; M. Loewenstein; J. R. Podolske; C. R. Webster; G. J. Flesch

During Arctic winters with a cold, stable stratospheric circulation, reactions on the surface of polar stratospheric clouds (PSCs) lead to elevated abundances of chlorine monoxide (ClO) that, in the presence of sunlight, destroy ozone. Here we show that PSCs were more widespread during the 1999/2000 Arctic winter than for any other Arctic winter in the past two decades. We have used three fundamentally different approaches to derive the degree of chemical ozone loss from ozonesonde, balloon, aircraft, and satellite instruments. We show that the ozone losses derived from these different instruments and approaches agree very well, resulting in a high level of confidence in the results. Chemical processes led to a 70% reduction of ozone for a region ∼1 km thick of the lower stratosphere, the largest degree of local loss ever reported for the Arctic. The Match analysis of ozonesonde data shows that the accumulated chemical loss of ozone inside the Arctic vortex totaled 117 ± 14 Dobson units (DU) by the end of winter. This loss, combined with dynamical redistribution of air parcels, resulted in a 88 ± 13 DU reduction in total column ozone compared to the amount that would have been present in the absence of any chemical loss. The chemical loss of ozone throughout the winter was nearly balanced by dynamical resupply of ozone to the vortex, resulting in a relatively constant value of total ozone of 340 ± 50 DU between early January and late March. This observation of nearly constant total ozone in the Arctic vortex is in contrast to the increase of total column ozone between January and March that is observed during most years.


Geophysical Research Letters | 2001

Severe and extensive denitrification in the 1999–2000 Arctic winter stratosphere

P. J. Popp; M. J. Northway; J. C. Holecek; R. S. Gao; D. W. Fahey; J. W. Elkins; D. F. Hurst; P. A. Romashkin; Geoffrey C. Toon; B. Sen; S. Schauffler; R. J. Salawitch; C. R. Webster; R. L. Herman; H. Jost; T. P. Bui; Paul A. Newman; Leslie R. Lait

Observations in the 1999-2000 Arctic winter stratosphere show the most severe and extensive denitrification ever observed in the northern hemisphere. Denitrification was inferred from in situ measurements conducted during high-altitude aircraft flights between January and March 2000. Average removal of more than 60% of the reactive nitrogen reservoir (NO y ) was observed in air masses throughout the core of the Arctic vortex. Denitrification was observed at altitudes between 16 and 21 km, with the most severe denitrification observed at 20 to 21 km. Nitrified air masses were also observed, primarily at lower altitudes. These results show that denitrification in the Arctic lower stratosphere can approach the severity and extent of that previously observed only in the Antarctic.


Journal of the Atmospheric Sciences | 2005

Evolution of a Florida Cirrus Anvil

Timothy J. Garrett; B. C. Navarro; Cynthia H. Twohy; Eric J. Jensen; Darrel Baumgardner; P. T. Bui; H. Gerber; R. L. Herman; Andrew J. Heymsfield; P. Lawson; Patrick Minnis; Louis Nguyen; Michael R. Poellot; S. K. Pope; Francisco P. J. Valero; Elliot M. Weinstock

Abstract This paper presents a detailed study of a single thunderstorm anvil cirrus cloud measured on 21 July 2002 near southern Florida during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE). NASA WB-57F and University of North Dakota Citation aircraft tracked the microphysical and radiative development of the anvil for 3 h. Measurements showed that the cloud mass that was advected downwind from the thunderstorm was separated vertically into two layers: a cirrus anvil with cloud-top temperatures of −45°C lay below a second, thin tropopause cirrus (TTC) layer with the same horizontal dimensions as the anvil and temperatures near −70°C. In both cloud layers, ice crystals smaller than 50 μm across dominated the size distributions and cloud radiative properties. In the anvil, ice crystals larger than 50 μm aggregated and precipitated while small ice crystals increasingly dominated the size distributions; as a consequence, measured ice water content...


Journal of Geophysical Research | 1999

An examination of chemistry and transport processes in the tropical lower stratosphere using observations of long‐lived and short‐lived compounds obtained during STRAT and POLARIS

F. Flocke; R. L. Herman; R. J. Salawitch; Elliot Atlas; C. R. Webster; S. Schauffler; R. A. Lueb; Randy D. May; Elisabeth J. Moyer; Karen H. Rosenlof; D. C. Scott; D. R. Blake; T. P. Bui

A suite of compounds with a wide range of photochemical lifetimes (3 months to several decades) was measured in the tropical and midlatitude upper troposphere and lower stratosphere during the Stratospheric Tracers of Atmospheric Transport (STRAT) experiment (fall 1995 and winter, summer, and fall 1996) and the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) deployment in late summer 1997. These species include various chlorofluorocarbons, hydrocarbons, halocarbons, and halons measured in whole air samples and CO measured in situ by tunable diode laser spectroscopy. Mixing ratio profiles of long-lived species in the tropical lower stratosphere are examined using a one-dimensional (1-D) photochemical model that includes entrainment from the extratropical stratosphere and is constrained by measured concentrations of OH. Profiles of tracers found using the 1-D model agree well with all the observed tropical profiles for an entrainment time scale of 8.5 -4 +6 months, independent of altitude between potential temperatures of 370 and 500 K. The tropical profile of CO is used to show that the annually averaged ascent rate profile, on the basis of a set of radiative heating calculations, is accurate to approximately ±44%, a smaller uncertainty than found by considering the uncertainties in the radiative model and its inputs. Tropical profiles of ethane and C 2 Cl 4 reveal that the concentration of Cl is higher than expected on the basis of photochemical model simulations using standard gas phase kinetics and established relationships between total inorganic chlorine and CFC-11. Our observations suggest that short-lived organic chlorinated compounds and HCI carried across the tropical tropopause may provide an important source of inorganic chlorine to the tropical lower stratosphere that has been largely unappreciated in previous studies. The entrainment timescale found here is considerably less than the value found by a similar study that focused on observations obtained in the lower stratosphere during 1994. Several possible explanations for this difference are discussed.


Geophysical Research Letters | 1998

Tropical entrainment time scales inferred from stratospheric N2O and CH4 observations

R. L. Herman; D. C. Scott; C. R. Webster; Randy D. May; Elisabeth J. Moyer; R. J. Salawitch; Yuk L. Yung; G. C. Toon; B. Sen; J. J. Margitan; Karen H. Rosenlof; Hope A. Michelsen; J. W. Elkins

Simultaneous in situ measurements of N_2O and CH_4 were made with a tunable diode laser spectrometer (ALIAS II) aboard the Observations from the Middle Stratosphere (OMS) balloon platform from New Mexico, Alaska, and Brazil during 1996 and 1997. We find different compact relationships of CH_4 with N_2O in the tropics and extra-tropics because mixing is slow between these regions. Transport into the extra-tropics from the tropics or the polar vortex leads to deviations from the normal compact relationship. We use measured N_2O and CH_4 and a simple model to quantify entrainment of mid-latitude stratospheric air into the tropics. The entrainment time scale is estimated to be 16 (+17, −8) months for altitudes between 20 and 28 km. The fraction of tropical air entrained from the extra-tropical stratosphere is 50% (+18%, −30%) at 20 km, increasing to 78% (+11%, −19%) at 28 km.


Journal of Geophysical Research | 2002

An analysis of large HNO3‐containing particles sampled in the Arctic stratosphere during the winter of 1999/2000

M. J. Northway; R. S. Gao; P. J. Popp; J. C. Holecek; D. W. Fahey; Kenneth S. Carslaw; Margaret A. Tolbert; Leslie R. Lait; S. Dhaniyala; Paul O. Wennberg; M. J. Mahoney; R. L. Herman; G. C. Toon; T. P. Bui

Large (>2 μm diameter) HNO_3-containing polar stratospheric cloud (PSC) particles were measured in situ by the NOAA NO_y instrument on board the NASA ER-2 aircraft during seven flights in the 1999/2000 Arctic winter vortex. Here we discuss the detection of these large PSC particles, their spatial distribution, the ambient conditions under which they were detected, and our methods for interpreting NO_y time series with respect to particle sizes and number concentrations. The particles were observed through the use of two NO_y inlets on a particle separator extending below the ER-2 aircraft. The particle phase is assumed to be nitric acid trihydrate (NAT) or nitric acid dihydrate (NAD). Over a 48-day period, particles were sampled in the Arctic vortex over a broad range of latitudes (60–85°N) and altitudes (15–21 km). Typically, regions of the atmosphere up to 4 km above the observed large particle clouds were saturated with respect to NAT. Occasionally, large particles were measured in air subsaturated with respect to NAT, suggesting ongoing particle evaporation. Vortex minimum temperatures in the observation period suggest that synoptic-scale ice saturation conditions are not required for the formation of this type of particle. Three analytical methods are used to estimate size and number concentrations from the NO_y time series. Results indicate particle sizes between 5 and 20 μm diameter and concentrations from 10^(−5) to 10^(−3) cm^(−3). These low number concentrations imply a selective nucleation mechanism. Particle sizes and number concentrations were greater during the midwinter flights than the late winter flights. Knowledge of the geographical extent of large particles, actual sampling conditions, and particle size distributions offers multiple constraints for atmospheric models of PSC formation, which will lead to a better understanding of the process of denitrification and improvements in modeling future ozone loss.


Applied Optics | 1999

AIRBORNE LASER INFRARED ABSORPTION SPECTROMETER (ALIAS-II) FOR IN SITU ATMOSPHERIC MEASUREMENTS OF N2O, CH4, CO, HCL, AND NO2 FROM BALLOON OR REMOTELY PILOTED AIRCRAFT PLATFORMS

D. C. Scott; R. L. Herman; C. R. Webster; Randy D. May; G. J. Flesch; Elisabeth J. Moyer

The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003-cm(-1)), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources. It is designed to make in situ measurements in the lower and middle stratosphere on either a balloon platform or high-altitude remotely piloted aircraft. Chemical species that can be measured precisely include long-lived tracers N(2)O and CH(4), the shorter-lived tracer CO, and chemically active species HCl and NO(2). Advances in electronic instrumentation developed for ALIAS-I, with the experience of more than 250 flights on board NASAs ER-2 aircraft, have been implemented in ALIAS-II. The two-channel spectrometer features an open cradle, multipass absorption cell to ensure minimal contamination from inlet and surfaces. Time resolution of the instrument is <or=3 s, allowing rapid in situ measurements with excellent spatial resolution. ALIAS-II has completed successful balloon flights from New Mexico, Alaska, and Brazil providing CH(4) and N(2)O vertical profiles in the tropics, mid-latitudes, and high northern latitudes up to altitudes of 32 km.


Journal of Geophysical Research | 2004

Evidence of the effect of summertime midlatitude convection on the subtropical lower stratosphere from CRYSTAL‐FACE tracer measurements

Eric A. Ray; Karen H. Rosenlof; Erik Charles Richard; Paula Hudson; Daniel J. Cziczo; M. Loewenstein; H. Jost; J. P. Lopez; B. A. Ridley; Andrew J. Weinheimer; D. D. Montzka; D. J. Knapp; Steven C. Wofsy; Bruce C. Daube; Christoph Gerbig; I. Xueref; R. L. Herman

[1] Trace gas and particle measurements taken during the CRYSTAL-FACE mission are used to examine mixing in the summer subtropical lower stratosphere. Vigorous convection in the central and eastern United States injected a significant amount of tropospheric air into the lower stratosphere, which was subsequently advected over the region sampled during the CRYSTAL-FACE mission. Aerosols produced by biomass burning were observed over Florida during a time period with a large number of forest fires in the western United States and eastern Canada, providing evidence of convective injection of tropospheric air into the lower stratosphere. The circumstances of the large-scale flow pattern in the upper troposphere and lower stratosphere, vigorous summertime convection, abundant forest fires, and the downstream sampling allow a unique view of mixing in the lower stratosphere. We calculate the fractions of midlatitude tropospheric air in the sampled lower stratosphere and mixing rates on the basis of consistency between a number of tracer-tracer correlations. The tropospheric endpoints to the mixing estimates give an indication of midlatitude continental convective input into the lower stratosphere. We also discuss the possible impact of summertime midlatitude convection on the composition of the stratosphere as a whole.


Geophysical Research Letters | 1998

Dehydration and denitrification in the Arctic Polar Vortex during the 1995–1996 winter

E. J. Hintsa; Paul A. Newman; Haflidi H. Jonsson; C. R. Webster; R. D. May; R. L. Herman; Leslie R. Lait; Mark R. Schoeberl; James W. Elkins; P. R. Wamsley; G. S. Dutton; T. P. Bui; D. W. Kohn; J. G. Anderson

Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (θ∼450–465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NOy) had also been removed, with layers of enhanced NOy at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (∼1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 µm) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20–30 K range of θ is estimated to have been dehydrated in this event.


Journal of Geophysical Research | 2004

New particle formation observed in the tropical//subtropical cirrus clouds

Shan-Hu Lee; J. C. Wilson; D. Baumgardner; R. L. Herman; Elliot M. Weinstock; Bernard G. Lafleur; Gregory L. Kok; Bruce E. Anderson; P. Lawson; B. Baker; Anthony W. Strawa; J. V. Pittman; Jeanne M. Reeves; T. P. Bui

[1] Previous studies show that new particle formation takes place in the outflows of marine stratus and cumulus clouds. Here we show measurements of high concentrations of ultrafine particles, diameters (Dp) from 4 to 9 nm (N4–9), in interstitial cloud aerosol. These ultrafine particles indicate that in situ new particle formation occurs interstitially in cirrus clouds. Measurements were made at altitudes from 7 to 16 km over Florida with instruments on the WB-57F aircraft during Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiments (CRYSTAL-FACE) in July 2002. Sizeresolved ice crystal particle concentrations and water vapor concentrations were measured to help identify the presence of cirrus clouds. About 72% of the in-cloud samples showed new particle formation events with the average N4–9 of 3.0 10 3 cm 3 , whereas about 56% of the out-of-cloud samples had events with the lower N4–9of 1.3 10 3 cm 3 . The periods during which high N4–9 appeared were often associated with times of increasing ice water content (IWC) and high relative humidity with respect to ice (RHI); however, the measured N4–9was not quantitatively correlated to IWC. The magnitude and frequency of new particle formation events seen in cirrus clouds were also higher than those previously observed in the tropical/subtropical upper troposphere in the absence of clouds. These results suggest that cirrus clouds may provide favorable conditions for particle formation, such as low temperatures, high RHI, high OH production (due to high water vapor), cloud electricity, and atmospheric convection. At present, however, particle formation mechanisms in clouds are unidentified. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and Structure: Cloud physics and chemistry; 0335 Atmospheric Composition and Structure: Ion chemistry of the atmosphere (2419, 2427); 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry;

Collaboration


Dive into the R. L. Herman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. R. Webster

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Annmarie Eldering

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

T. L. Thompson

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Karen H. Rosenlof

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Heymsfield

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

D. W. Fahey

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

P. J. Popp

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. S. Kulawik

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge