Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. L. Stamps is active.

Publication


Featured researches published by R. L. Stamps.


Journal of Physics D | 2000

Mechanisms for exchange bias

R. L. Stamps

Modern applications for thin film magnets involve unique requirements for the control and design of specific magnetic properties. The exchange bias effect in ferromagnet/antiferromagnet bilayers appears to be a useful feature for controlling one of the most important characteristics of a ferromagnet: coercivity. Prospects for control and enhancement of desirable effects depend upon a clear understanding of mechanisms governing exchange bias. The processes underlying the existence and properties of exchange bias are reviewed, with particular emphasis on the roles of interface structure and temperature. Results from numerical simulations are used to illustrate how exchange bias is modified by geometric structures at the interface and randomly placed defects. A general theoretical formulation of the bias problem is proposed, and an expression for the interface energy is derived. A key result is the existence of higher-order coupling terms when more than one sublattice of the antiferromagnet is present at the interface. Results from calculations of finite temperature effects on bias and coercivity are described, and the concept of viscosity in the antiferromagnet is discussed. A brief discussion is also included of how a dynamic linear response, such as ferromagnetic resonance or light scattering, can be used to determine relevant anisotropy and exchange parameters.


Applied Physics Letters | 2008

Realization of spin-wave logic gates

T. Schneider; A. A. Serga; B. Leven; B. Hillebrands; R. L. Stamps; Mikhail Kostylev

We demonstrate the functionality of spin-wave logic exclusive-not-OR and not-AND gates based on a Mach-Zehnder-type interferometer which has arms implemented as sections of ferrite film spin-wave waveguides. Logical input signals are applied to the gates by varying either the phase or the amplitude of the spin waves in the interferometer arms. This phase or amplitude variation is produced by Oersted fields of dc current pulses through conductors placed on the surface of the magnetic films.


Physical Review Letters | 2007

Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy.

Peter J. Metaxas; J.-P. Jamet; A. Mougin; M. Cormier; J. Ferré; V. Baltz; B. Rodmacq; B. Dieny; R. L. Stamps

We report on magnetic domain-wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain-wall motion, analysis of which yields values for the damping parameter, alpha.


Journal of Physics D | 2014

The 2014 Magnetism Roadmap

R. L. Stamps; Stephan Breitkreutz; Johan Åkerman; Andrii V. Chumak; Y. Otani; Gerrit E. W. Bauer; Jan-Ulrich Thiele; M. Bowen; Sara A. Majetich; Mathias Kläui; Ioan Lucian Prejbeanu; B. Dieny; Nora Dempsey; B. Hillebrands

Magnetism is a very fascinating and dynamic field. Especially in the last 30 years it has experienced many major advances in the full range from novel fundamental phenomena to new products. Applications such as hard disk drives and magnetic sensors are part of our daily life, and new applications, such as in non-volatile computer random access memory, are expected to surface shortly. Thus it is timely for describing the current status, and current and future challenges in the form of a Roadmap article. This 2014 Magnetism Roadmap provides a view on several selected, currently very active innovative developments. It consists of 12 sections, each written by an expert in the field and addressing a specific subject, with strong emphasize on future potential. This Roadmap cannot cover the entire field. We have selected several highly relevant areas without attempting to provide a full review - a future update will have room for more topics. The scope covers mostly nano-magnetic phenomena and applications, where surfaces and interfaces provide additional functionality. New developments in fundamental topics such as interacting nano-elements, novel magnon-based spintronics concepts, spin-orbit torques and spin-caloric phenomena are addressed. New materials, such as organic magnetic materials and permanent magnets are covered. New applications are presented such as nano-magnetic logic, non-local and domain-wall based devices, heat-assisted magnetic recording, magnetic random access memory, and applications in biotechnology. May the Roadmap serve as a guideline for future emerging research directions in modern magnetism.


Journal of Physics: Condensed Matter | 1993

Magnetic multilayers: spin configurations, excitations and giant magnetoresistance

R. E. Camley; R. L. Stamps

The authors discuss some of the fundamental properties unique to magnetic multilayers. Complex spin configurations are examined for many different systems and are shown to arise from a simple competition between exchange and Zeeman energies. The spin configurations found in multilayer systems determine macroscopic properties such as the static susceptibility and magnetization, and can lead to anomalous field and temperature behaviour. The authors also discuss the dynamic behavior of magnetic multilayers. Emphasis is placed on spin waves in magnetic multilayers with canted spin configurations and the softening of modes at magnetic phase transitions. Furthermore they show that spin wave excitations provide a powerful method for studying exchange interactions and spin configurations. Finally, the phenomenon of giant magnetoresistance in magnetic multilayers where the resistivity of the metallic structure can be changed by over 60% at room temperature, is discussed. Simple theoretical approaches are used to understand and predict the properties of the multilayer systems and comparisons between theory and experiment are stressed.


Applied Physics Letters | 2009

Spin-wave propagation in a microstructured magnonic crystal

A. V. Chumak; P. Pirro; A. A. Serga; Mikhail Kostylev; R. L. Stamps; Helmut Schultheiss; K. Vogt; S. J. Hermsdoerfer; B. Laegel; P. A. Beck; B. Hillebrands

Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a Permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatially resolved Brillouin light scattering microscopy. A rejection frequency band was clearly observed. The band gap frequency was controlled by the applied magnetic field. The measured spin-wave intensity as a function of frequency and propagation distance is in good agreement with a model calculation.


Journal of Physics: Condensed Matter | 2013

Artificial ferroic systems: novel functionality from structure, interactions and dynamics.

L. J. Heyderman; R. L. Stamps

Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.


Applied Physics Letters | 2008

Partial frequency band gap in one-dimensional magnonic crystals

Mikhail Kostylev; Philip Schrader; R. L. Stamps; G. Gubbiotti; G. Carlotti; A. O. Adeyeye; S. Goolaup; N. Singh

Collective spin wave modes propagating in an array of magnetic stripes coupled by dynamic dipole interaction are investigated by Brillouin light scattering. It is demonstrated that this structure supports propagation of discrete spin waves at any angle with respect to the stripes length. The data are interpreted using a theoretical model based on the Bloch wave approach. It is shown that, due to the one-dimensional artificial periodicity of the medium, the gaps in the spin wave spectrum are partial: the frequency passbands for propagation along the direction of periodicity overlap with the stop bands for propagation along the stripes.


Scientific Reports | 2015

Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures

Marijan Beg; Rebecca Carey; Weiwei Wang; David Cortés-Ortuño; Mark Vousden; Marc-Antonio Bisotti; Maximilian Albert; Dmitri Chernyshenko; Ondrej Hovorka; R. L. Stamps; Hans Fangohr

Magnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions’ magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy. We also report the regions of metastability for non-ground state equilibrium configurations. We show that bistable skyrmionic textures undergo hysteretic behaviour between two energetically equivalent skyrmionic states with different core orientation, even in absence of both magnetocrystalline and demagnetisation-based shape anisotropies, suggesting the existence of Dzyaloshinskii-Moriya-based shape anisotropy. Finally, we show that the skyrmionic texture core reversal dynamics is facilitated by the Bloch point occurrence and propagation.


Physical Review Letters | 2010

Vertex dynamics in finite two-dimensional square spin ices.

Zoe Budrikis; Paolo Politi; R. L. Stamps

Local magnetic ordering in artificial spin ices is discussed from the point of view of how geometrical frustration controls dynamics and the approach to steady state. We discuss the possibility of using a particle picture based on vertex configurations to interpret the time evolution of magnetic configurations. Analysis of possible vertex processes allows us to anticipate different behaviors for open and closed edges and the existence of different field regimes. Numerical simulations confirm these results and also demonstrate the importance of correlations and long-range interactions in understanding particle population evolution. We also show that a mean-field model of vertex dynamics gives important insights into finite size effects.

Collaboration


Dive into the R. L. Stamps's collaboration.

Top Co-Authors

Avatar

B. Hillebrands

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

R. E. Camley

University of Colorado Colorado Springs

View shared research outputs
Top Co-Authors

Avatar

Mikhail Kostylev

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard Wee

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Ferré

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge