R. Launhardt
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Launhardt.
Astronomy and Astrophysics | 2002
R. Launhardt; R. Zylka; P. G. Mezger
We analyse IRAS and COBE DIRBE data at wavelengths between 2.2 and 240 of the central 500 pc of the Galaxy and derive the large-scale distribution of stars and interstellar matter in the Nuclear Bulge. Models of the Galactic Disk and Bulge are developed in order to correctly decompose the total surface brightness maps of the inner Galaxy and to apply proper extinction corrections. The Nuclear Bulge appears as a distinct, massive disk-like complex of stars and molecular clouds which is, on a large scale, symmetric with respect to the Galactic Centre. It is distinguished from the Galactic Bulge by its flat disk-like morphology, very high density of stars and molecular gas, and ongoing star formation. The Nuclear Bulge consists of an R^(-2) Nuclear Stellar Cluster at the centre, a large Nuclear Stellar Disk with radius 230 ± 20 pc and scale height 45 ± 5 pc, and the Nuclear Molecular Disk of same size. The total stellar mass and luminosity of the Nuclear Bulge are 1.4 ± 0.6 x 10^9 and 2.5 ± 1 x 10^9, respectively. About 70% of the luminosity is due to optical and UV radiation from young massive Main-Sequence stars which are most abundant in the Nuclear Stellar Cluster. For the first time, we derive a photometric mass distribution for the central 500 pc of the Galaxy which is fully consistent with the kinematic mass distribution. We find that the often cited R^(-2) distribution holds only for the central ~30 pc and that at larger radii the mass distribution is dominated by the Nuclear Stellar Disk which has a flatter density profile. The total interstellar hydrogen mass in the Nuclear Bulge is M_H = 2 ± 0.3 x 10^7, distributed in a warm inner disk with R = 110 ± 20 pc and a massive, cold outer torus which contains more than 80% of this mass. Interstellar matter in the Nuclear Bulge is very clumpy with ~90% of the mass contained in dense and massive molecular clouds with a volume filling factor of only a few per cent. This extreme clumpiness, probably caused by the tidal stability limit in the gravitational potential of the Nuclear Bulge, enables the strong interstellar radiation field to penetrate the entire Nuclear Bulge and explains the relatively low average extinction towards the Galactic Centre. In addition, we find 3 x 10^7 of cold and dense material outside the Nuclear Bulge at positive longitudes and 1 x 10^7 at negative longitudes. This material is not heated by the stars in the Nuclear Bulge and gives rise to the observed asymmetry in the distribution of interstellar matter in the Central Molecular Zone.
Astronomy and Astrophysics | 2013
C. Eiroa; A. Mora; B. Montesinos; Olivier Absil; J.-Ch. Augereau; A. Bayo; G. Bryden; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; A. M. Heras; Alexander V. Krivov; R. Launhardt; R. Liseau; T. Löhne; J. Maldonado; G. L. Pilbratt; Aki Roberge; J. Rodmann; J. Sanz-Forcada; E. Solano; Karl R. Stapelfeldt; Philippe Thebault; Sebastian Wolf; D. R. Ardila; Maria Jesus Arevalo; C. Beichmann; V. Faramaz; B. M. González-García
Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
Astronomy and Astrophysics | 2010
D. Semenov; F. Hersant; Valentine Wakelam; Anne Dutrey; E. Chapillon; St. Guilloteau; Th. Henning; R. Launhardt; V. Piétu; Katharina Schreyer
Abridged: We detail and benchmark two sophisticated chemical models developed by the Heidelberg and Bordeaux astrochemistry groups. The main goal of this study is to elaborate on a few well-described tests for state-of-the-art astrochemical codes covering a range of physical conditions and chemical processes, in particular those aimed at constraining current and future interferometric observations of protoplanetary disks. We consider three physical models: a cold molecular cloud core, a hot core, and an outer region of a T Tauri disk. Our chemical network (for both models) is based on the original gas-phase osu_03_2008 ratefile and includes gas-grain interactions and a set of surface reactions for the H-, O-, C-, S-, and N-bearing molecules. The benchmarking is performed with the increasing complexity of the considered processes: (1) the pure gas-phase chemistry, (2) the gas-phase chemistry with accretion and desorption, and (3) the full gas-grain model with surface reactions. Using atomic initial abundances with heavily depleted metals and hydrogen in its molecular form, the chemical evolution is modeled within 10^9 years. The time-dependent abundances calculated with the two chemical models are essentially the same for all considered physical cases and for all species, including the most complex polyatomic ions and organic molecules. This result however required a lot of efforts to make all necessary details consistent through the model runs, e.g. definition of the gas particle density, density of grain surface sites, the strength and shape of the UV radiation field, etc. The reference models and the benchmark setup, along with the two chemical codes and resulting time-dependent abundances are made publicly available in the Internet: this http URL
Nature | 2008
J. Setiawan; Th. Henning; R. Launhardt; A. Müller; P. Weise; M. Kürster
There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8±3.3)MJupiter around TW Hydrae (TW Hya), a nearby young star with an age of only 8–10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.
Astronomy and Astrophysics | 2010
Thomas Henning; H. Linz; O. Krause; Sarah Ragan; H. Beuther; R. Launhardt; Markus Nielbock; Tatiana Vasyunina
Context. Infrared-dark clouds (IRDCs) are the precursors to massive stars and stellar clusters. G011.11–0.12 is a well-studied filamentary IRDC, though, to date, the absence of far-infrared data with sufficient spatial resolution has limited the understanding of the structure and star-formation activity. Aims. We use Herschel to study the embedded population of young pre- and protostellar cores in this IRDC. Methods. We examine the cloud structure, which appears in absorption at short wavelength and in emission at longer wavelength. We derive the properties of the massive cores from the spectral energy distributions of bright far-infrared point sources detected with the PACS instrument aboard Herschel. Results. We report on the detection and characterization of pre- and protostellar cores in a massive filamentary infrared-dark cloud G011.11–0.12 using PACS. We characterize 18 cores directly associated with the filament, two of which have masses over 50 M� , making them the best candidates to become massive stars in G011.11−0.12. These cores are likely at various stages of protostar formation, showing elevated temperature (� T �∼ 22 K) with respect to the ambient gas reservoir. The core masses (� M �∼ 24 M� )a re small compared to that in the cold filament. The mean core separation is 0.9 pc, well in excess of the Jeans length in the filament. Conclusions. We confirm that star formation in IRDCs is underway and diverse, and IRDCs have the capability of forming massive stars and clusters.
Astrobiology | 2009
Charles S. Cockell; A. Léger; M. Fridlund; T. M. Herbst; Lisa Kaltenegger; Olivier Absil; Charles A. Beichman; Willy Benz; Michel Blanc; Andre Brack; A. Chelli; L. Colangeli; H. Cottin; F. Coudé du Foresto; W. C. Danchi; Denis Defrere; J. W. den Herder; C. Eiroa; J. S. Greaves; Th. Henning; K. J. Johnston; Hugh R. A. Jones; Lucas Labadie; H. Lammer; R. Launhardt; Peter R. Lawson; Oliver P. Lay; J.-M. LeDuigou; R. Liseau; Fabien Malbet
The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.
Astronomy and Astrophysics | 2012
Sarah Ragan; Thomas Henning; O. Krause; J. Pitann; H. Beuther; H. Linz; J. Tackenberg; Zoltan Balog; M. Hennemann; R. Launhardt; Nils Lippok; Markus Nielbock; A. Schmiedeke; F. Schuller; Juergen Steinacker; Amelia M. Stutz; Tatiana Vasyunina
Context. Stars are born deeply embedded in molecular clouds. In the earliest embedded phases, protostars emit the bulk of their radiation in the far-infrared wavelength range, where Herschel is perfectly suited to probe at high angular resolution and dynamic range. In the high-mass regime, the birthplaces of protostars are thought to be in the high-density structures known as infrared-dark clouds (IRDCs). While massive IRDCs are believed to have the right conditions to give rise to massive stars and clusters, the evolutionary sequence of this process is not well-characterized. Aims: As part of the Earliest Phases of Star formation (EPoS) Herschel guaranteed time key program, we isolate the embedded structures within IRDCs and other cold, massive molecular clouds. We present the full sample of 45 high-mass regions which were mapped at PACS 70, 100, and 160 μm and SPIRE 250, 350, and 500 μm. In the present paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host molecular cloud and investigate their evolutionary stage. Methods: We construct spectral energy distributions (SEDs) of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 μm. From single-temperature modified blackbody fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of emission at PACS wavelengths. Results: The core population has a median temperature of 20 K and has masses and luminosities that span four to five orders of magnitude. Cores with a counterpart at 24 μm are warmer and bluer on average than cores without a 24 μm counterpart. We conclude that cores bright at 24 μm are on average more advanced in their evolution, where a central protostar(s) have heated the outer bulk of the core, than 24 μm-dark cores. The 24 μm emission itself can arise in instances where our line of sight aligns with an exposed part of the warm inner core. About 10% of the total cloud mass is found in a given clouds core population. We uncover over 300 further candidate cores which are dark until 100 μm. These are possibly starless objects, and further observations will help us determine the nature of these very cold cores.
The Astrophysical Journal | 2012
Brandon C. Kelly; Rahul Shetty; Amelia M. Stutz; Jens Kauffmann; Alyssa A. Goodman; R. Launhardt
We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index β. The traditional non-hierarchical approaches, typically based on χ2 minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and β even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the χ2 fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and β are weakly positively correlated—in contradiction with the χ2 fits, which indicate a T-β anti-correlation from the same data set. Additionally, in comparison to the χ2 fits the Bayesian SED parameter estimates exhibit a reduced range in values.
Astronomy and Astrophysics | 2012
Markus Nielbock; R. Launhardt; Juergen Steinacker; Amelia M. Stutz; Zoltan Balog; H. Beuther; Jeroen Bouwman; Th. Henning; P. Hily-Blant; Jouni Kainulainen; O. Krause; H. Linz; N. Lippok; Sarah Ragan; C. Risacher; A. Schmiedeke
Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims. We aim to determine the distribution of the dust temperature and the density of the starless core B68. Methods. In the framework of the Herschel guaranteed-time key programme “The Earliest Phases of Star formation” (EPoS), we have imaged B68 between 100 and 500 μm. Ancillary data at (sub)millimetre wavelengths, spectral line maps of the 12 CO (2–1), and 13 CO (2–1) transitions, as well as an NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from the line-of-sight averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent-shaped morphology found in the FIR maps. Results. For the first time, we spatially resolve the dust temperature and density distribution of B68, convolved to a beam size of 36. �� 4. We find a temperature gradient dropping from (16.7 +1.3 −1.0 ) K at the edge to (8.2
Astronomy and Astrophysics | 2010
Amelia M. Stutz; R. Launhardt; H. Linz; O. Krause; T. Henning; Jouni Kainulainen; Markus Nielbock; J. Steinacker; P. André
We present Herschel observations of the isolated, low-mass star-forming Bok globule CB244. It contains two cold sources, a low-mass Class 0 protostar and a starless core, which is likely to be prestellar in nature, separated by 90 �� (∼18 000 AU). The Herschel data sample the peak of the Planck spectrum for these sources, and are therefore ideal for dust-temperature and column density modeling. With these data and a near-IR extinction map, the MIPS 70 μm mosaic, the SCUBA 850 μm map, and the IRAM 1.3 mm map, we model the dust-temperature and column density of CB 244 and present the first measured dust-temperature map of an entire starforming molecular cloud. We find that the column-averaged dust-temperature near the protostar is ∼17.7 K, while for the starless core it is ∼10.6 K, and that the effect of external heating causes the cloud dust-temperature to rise to ∼17 K where the hydrogen column density drops below 10 21 cm −2 . The total hydrogen mass of CB 244 (assuming a distance of 200 pc) is 15 ± 5 M� . The mass of the