R. Lawrence Edwards
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Lawrence Edwards.
Nature | 2008
Yongjin Wang; Hai Cheng; R. Lawrence Edwards; Xinggong Kong; Xiaohua Shao; Shitao Chen; Jiangyin Wu; Xiouyang Jiang; Xianfeng Wang; Zhisheng An
High-resolution speleothem records from China have provided insights into the factors that control the strength of the East Asian monsoon. Our understanding of these factors remains incomplete, however, owing to gaps in the record of monsoon history over the past two interglacial–glacial cycles. In particular, missing sections have hampered our ability to test ideas about orbital-scale controls on the monsoon, the causes of millennial-scale events and relationships between changes in the monsoon and climate in other regions. Here we present an absolute-dated oxygen isotope record from Sanbao cave, central China, that completes a Chinese-cave-based record of the strength of the East Asian monsoon that covers the past 224,000 years. The record is dominated by 23,000-year-long cycles that are synchronous within dating errors with summer insolation at 65° N (ref. 10), supporting the idea that tropical/subtropical monsoons respond dominantly and directly to changes in Northern Hemisphere summer insolation on orbital timescales. The cycles are punctuated by millennial-scale strong-summer-monsoon events (Chinese interstadials), and the new record allows us to identify the complete series of these events over the past two interglacial–glacial cycles. Their duration decreases and their frequency increases during glacial build-up in both the last and penultimate glacial periods, indicating that ice sheet size affects their character and pacing. The ages of the events are exceptionally well constrained and may thus serve as benchmarks for correlating and calibrating climate records.
Nature | 2003
Kim M. Cobb; Christopher D. Charles; Hai Cheng; R. Lawrence Edwards
Any assessment of future climate change requires knowledge of the full range of natural variability in the El Niño/Southern Oscillation (ENSO) phenomenon. Here we splice together fossil-coral oxygen isotopic records from Palmyra Island in the tropical Pacific Ocean to provide 30–150-year windows of tropical Pacific climate variability within the last 1,100 years. The records indicate mean climate conditions in the central tropical Pacific ranging from relatively cool and dry during the tenth century to increasingly warmer and wetter climate in the twentieth century. But the corals also document a broad range of ENSO behaviour that correlates poorly with these estimates of mean climate. The most intense ENSO activity within the reconstruction occurred during the mid-seventeenth century. Taken together, the coral data imply that the majority of ENSO variability over the last millennium may have arisen from dynamics internal to the ENSO system itself.
Science | 1992
J. Warren Beck; R. Lawrence Edwards; Emi Ito; Frederick W. Taylor; Jacques Récy; Francis Rougerie; Pascale Joannot; Christian Hénin
Seasonal records of tropical sea-surface temperature (SST) over the past 105 years can be recovered from high-precision measurements of coral strontium/calcium ratios with the use of thermal ionization mass spectrometry. The temperature dependence of these ratios was calibrated with corals collected at SST recording stations and by 18O/16O thermometry. The results suggest that mean monthly SST may be determined with an apparent accuracy of better than 0.5�C. Measurements on a fossil coral indicate that 10,200 years ago mean annual SSTs near Vanuatu in the southwestern Pacific Ocean were about 5�C colder than today and that seasonal variations in SST were larger. These data suggest that tropical climate zones were compressed toward the equator during deglaciation.
Science | 2008
Pingzhong Zhang; Hai Cheng; R. Lawrence Edwards; Fahu Chen; Yongjin Wang; Xunlin Yang; Jian Liu; Ming Tan; Xianfeng Wang; Jinghua Liu; Chunlei An; Zhibo Dai; Jing Zhou; Dezhong Zhang; Jihong Jia; Liya Jin; Kathleen R. Johnson
A record from Wanxiang Cave, China, characterizes Asian Monsoon (AM) history over the past 1810 years. The summer monsoon correlates with solar variability, Northern Hemisphere and Chinese temperature, Alpine glacial retreat, and Chinese cultural changes. It was generally strong during Europes Medieval Warm Period and weak during Europes Little Ice Age, as well as during the final decades of the Tang, Yuan, and Ming Dynasties, all times that were characterized by popular unrest. It was strong during the first several decades of the Northern Song Dynasty, a period of increased rice cultivation and dramatic population increase. The sign of the correlation between the AM and temperature switches around 1960, suggesting that anthropogenic forcing superseded natural forcing as the major driver of AM changes in the late 20th century.
Science | 2009
Hai Cheng; R. Lawrence Edwards; Wallace S. Broecker; George H. Denton; Xinggong Kong; Yongjin Wang; Rong Zhang; Xianfeng Wang
Monsoon Cave Recordings Rocky deposits in caves in central China record the changes over time in the Asian Monsoon through the oxygen isotopic composition of the minerals from which they are formed. These deposits can be precisely dated and provide an absolute time line for climate system changes. Cheng et al. (p. 248; see the Perspective by Severinghaus) present oxygen isotope data from speleothems collected from Sanbao Cave, China, for the three glacial terminations that occurred between 120,000 and 350,000 years ago. The data reveal variations in the amount of precipitation delivered by the Asian Monsoon over time. Comparison of the timing of these changes with corresponding changes in ice core and marine sedimentary records provides mechanistic insights into how variations in insolation affect ice sheets and ice age terminations. Variability of the Asian Monsoon over the past 400,000 years correlates with the ends of glacial periods. 230Th-dated oxygen isotope records of stalagmites from Sanbao Cave, China, characterize Asian Monsoon (AM) precipitation through the ends of the third- and fourthmost recent ice ages. As a result, AM records for the past four glacial terminations can now be precisely correlated with those from ice cores and marine sediments, establishing the timing and sequence of major events. In all four cases, observations are consistent with a classic Northern Hemisphere summer insolation intensity trigger for an initial retreat of northern ice sheets. Meltwater and icebergs entering the North Atlantic alter oceanic and atmospheric circulation and associated fluxes of heat and carbon, causing increases in atmospheric CO2 and Antarctic temperatures that drive the termination in the Southern Hemisphere. Increasing CO2 and summer insolation drive recession of northern ice sheets, with probable positive feedbacks between sea level and CO2.
Chemical Geology | 2002
Chuan-Chou Shen; R. Lawrence Edwards; Hai Cheng; Jeffrey A. Dorale; Rebecca B. Thomas; S. Bradley Moran; Sarah E. Weinstein; Henrietta N. Edmonds
We have developed techniques by sector-field inductively coupled plasma mass spectrometry (ICP-MS) for measuring the isotopic composition and concentration of uranium and thorium, focusing on the rare isotopes, 230Th and 234U. These isotopes have been widely used as tracers in earth sciences, e.g., chronology, paleoclimatology, archeology, hydrology, geochemistry, and oceanography. Measurements made on reference materials demonstrate that the analytical precision approximates counting statistics and that the accuracy of the measurement is within error of accepted values. Routine measurement times are 20 min for U and 10 min for Th. The sensitivities (ions counted/atoms introduced) are 2–3‰ for U and 1.5–2‰ for Th. Samples of 10–40 ng of 238U (0.5–2.0 pg of 234U) give measurement precisions of 1–2‰ (2σ) for δ234U and U concentration ([U]). Only 0.4 pg of 230Th are needed to achieve [230Th] and 230Th/232Th data with errors less than 5‰ even for cases where 230Th/232Th is 10−5 or less. Our ICP-MS data, including uranium standards, thorium standards, 238U–234U–230Th–232Th dating of speleothems and 230Th–232Th in oceanic particulates, replicates measurements made by thermal ionization mass spectrometry (TIMS). Compared to TIMS, the ICP-MS method allows smaller sample size and higher sample throughput due to higher sensitivity, fewer sample preparation steps and shorter measurement times. However, mass biases, intensity biases, spectral interferences and instrumental blanks are significant and must be addressed.
Science | 2008
Kerry Sieh; Danny Hilman Natawidjaja; Aron J. Meltzner; Chuan-Chou Shen; Hai Cheng; Kuei Shu Li; Bambang W. Suwargadi; John Galetzka; Belle Philibosian; R. Lawrence Edwards
Records of relative sea-level change extracted from corals of the Mentawai islands, Sumatra, imply that this 700-kilometer-long section of the Sunda megathrust has generated broadly similar sequences of great earthquakes about every two centuries for at least the past 700 years. The moment magnitude 8.4 earthquake of September 2007 represents the first in a series of large partial failures of the Mentawai section that will probably be completed within the next several decades.
Tectonophysics | 1995
Paul Mann; Frederick W. Taylor; R. Lawrence Edwards; Teh-Lung Ku
Abstract The pattern of folding, faulting, and late Quaternary coral-reef uplift rates in western and central Hispaniola (Haiti and Dominican Republic) suggest that the elongate Gonave microplate, a 190,000-km2 area of the northeastern Caribbean plate, is in the process of shearing off the Caribbean plate and accreting to the North American plate. Late Cenozoic transpression between the southeastern Bahama Platform and the Caribbean plate in Hispaniola has inhibited the eastward motion of the northeastern corner of the plate. Transpression is manifested in western and central Hispaniola by the formation of regional scale folds that correspond to present-day, anticlinal topographic mountain chains continuous with offshore anticlinal ridges. Areas of most rapid Quaternary uplift determined from onland coral reefs 125 ka and younger, coincide with the axial traces of these folds. Offshore data suggest recent folding and faulting of the seafloor. Onshore reef data do not conclusively require late Quaternary folding, but demonstrate that tectonic uplift rates of the axial areas of the anticlines decrease from the Northwest Peninsula of Haiti (0.37 mm/yr) to to the central part of the coast of western Haiti (0.19 mm/yr) to the south-central part of western Haiti (0 mm/yr). Formation of the 1200-km-long Enriquillo-Plantain Garden-Walton fault zone as a ‘bypass’ strike-slip fault has isolated the southern edge of the Gonave microplate and is allowing continued, unimpeded eastward motion of a smaller Caribbean plate past the zone of late Neogene convergence and Quaternary uplift of coral reefs in Hispaniola. Offshore seismic reflection data from the Jamaica Passage, the marine strait separating Jamaica and Haiti, show that the Enriquillo-Plantain Garden fault zone forms a narrow but deep, active fault-bounded trough beneath the passage. The active fault is continuous with active faults mapped onshore in western Haiti and eastern Jamaica; the bathymetric deep is present because the Jamaica Passage fault segment represents a 50-km-wide, transtensional left-step of the fault trace between Haiti and Jamaica. Onshore satellite imagery and field observations suggest that the Enriquillo-Plantain Garden fault forms a continuous trace extending from central Hispaniola east of Lake Enriquillo, Dominican Republic, to the westernmost end of the southern peninsula of Haiti. The regional lineament corresponds to a recent fault scarp in Quaternary alluvium of the Clonard pull-apart basin in the central part of the southern peninsula of Haiti and suggests that at least this part of the lineament has undergone recent slip. Calmus (1983) has suggested a total offset of 30–50 km of the Enriquillo-Plantain Garden fault zone in the southern peninsula of Haiti using the apparent offset of lithologic units. Seismic reflection data from Lake Enriquillo document recent deformation of Quaternary lake sediments where the lineament crosses the lake. Leveling of the crest of a late Holocene coral reef and associated algal tufa around Lake Enriquillo demonstrate late Holocene vertical movement and tilting in a 1500-m-wide zone parallel to the fault trend. Lateral offset is difficult to show in the Enriquillo Valley area because of rapid recent sedimentation into the valley. The pattern of inactive strike-slip faults and fold belts of Cenozoic age in Cuba and the Yucatan basin suggest that two elongate microplates were sheared off the proto-Caribbean plate and accreted to the North American plate by a similar process in Paleocene and Eocene times. Age of terminal deformation in western, central and eastern Cuba is consistent with southeastward younging and migration of arc collision. The similarity of the size and sequence of events in Cuba suggests that the process of oblique collision and sideways motion of the plate along a new strike-slip fault towards a free face may be an important process of microplate formation and interplate transfer in other areas.
Geochimica et Cosmochimica Acta | 2000
Hai Cheng; Jess F. Adkins; R. Lawrence Edwards; Edward A. Boyle
Th, 232 Th, 234 U and 238 U compositions of several deep-sea solitary corals, mainly the species Desmophyllum cristagalli, were determined by thermal ionization mass spectrometry (TIMS). It is possible to obtain high precision ages on modern pristine corals that have low ( 232 Th) (5 to a few hundred ppt). However, because older deep-sea corals tend to have higher ( 232 Th) compared to surface corals, and the initial 230 Th/ 232 Th ratio is uncertain, older deep-sea corals have larger age uncertainties ( 6several hundred years for samples with a few thousand ppt 232 Th). Therefore, the key hurdle for precise U-Th dating is to remove or account for contaminants which contain elevated 232 Th and associated 230 Th not due to closed system decay within the coral lattice. A modification of the trace metal cleaning methods used for foraminifera and surface corals can significantly reduce this contamination. By counting the visible growth bands and measuring the mean age of a single septum, the extension rate of D. cristagalli was estimated to be between 0.1 and 3.1 mm/year. In a mean sense, bands appear to be precipitated annually, but this estimate has a large uncertainty. If appropriate tracer calibrations can be established, these corals are therefore suitable to record decadal or sub-decadal oceanographic changes over the course of their lifetime. The d 234 U values of all modern samples from different localities and different depths are similar (mean 145.5 6 2.3‰) and indistinguishable from the data obtained from surface corals. At a precision of about 62‰, we find no structure in the oceanic profile of d 234 U ratios over the top 2000 m of the water column. Copyright
Science | 2011
Stephen Barker; Gregor Knorr; R. Lawrence Edwards; Frédéric Parrenin; Aaron E. Putnam; Luke C Skinner; Eric W. Wolff; Martin Ziegler
Greenland climate variability for the past 800,000 years was inferred from the Antarctic ice-core temperature record. We constructed an 800,000-year synthetic record of Greenland climate variability based on the thermal bipolar seesaw model. Our Greenland analog reproduces much of the variability seen in the Greenland ice cores over the past 100,000 years. The synthetic record shows strong similarity with the absolutely dated speleothem record from China, allowing us to place ice core records within an absolute timeframe for the past 400,000 years. Hence, it provides both a stratigraphic reference and a conceptual basis for assessing the long-term evolution of millennial-scale variability and its potential role in climate change at longer time scales. Indeed, we provide evidence for a ubiquitous association between bipolar seesaw oscillations and glacial terminations throughout the Middle to Late Pleistocene.